- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Mid-Latitude Atmospheric Dynamics: A First Course provides an introduction to the physical and mathematical description of mid-latitude atmospheric dynamics and its application to the diagnosis of extratropical cyclones. Requring a background in physics and calculus but no prior knowledge of meteorology, this student-friendly text places the emphasis on conceptual understanding.
Written in a conversation tone, this text is an ideal companion for a first course on the subject, delving into greater depth as the book, and the student, progresses. Real weather examples are woven through the…mehr
Andere Kunden interessierten sich auch für
- Amanda LynchApplied Atmospheric Dynamics246,99 €
- John HardyClimate Change280,99 €
- John T. HardyClimate Change97,99 €
- Peter Michael InnessOperational Weather Forecasting103,99 €
- Peter Michael InnessOperational Weather Forecasting168,99 €
- Climate and Hydrology of Mountain Areas335,99 €
- Helmut KrausDie Atmosphäre der Erde69,99 €
-
-
-
Mid-Latitude Atmospheric Dynamics: A First Course provides an introduction to the physical and mathematical description of mid-latitude atmospheric dynamics and its application to the diagnosis of extratropical cyclones. Requring a background in physics and calculus but no prior knowledge of meteorology, this student-friendly text places the emphasis on conceptual understanding.
Written in a conversation tone, this text is an ideal companion for a first course on the subject, delving into greater depth as the book, and the student, progresses. Real weather examples are woven through the more mathematically focused early chapters, while later chapters introduce a range of case-studies from the around the globe to illustrate theoretical and phenomenological aspects of the mid-latitude cyclone life cycle.
_ features end of chapter bibliography and problems
_ takes a conceptual building block approach
_ includes numerous real weather examples from around the globe
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Written in a conversation tone, this text is an ideal companion for a first course on the subject, delving into greater depth as the book, and the student, progresses. Real weather examples are woven through the more mathematically focused early chapters, while later chapters introduce a range of case-studies from the around the globe to illustrate theoretical and phenomenological aspects of the mid-latitude cyclone life cycle.
_ features end of chapter bibliography and problems
_ takes a conceptual building block approach
_ includes numerous real weather examples from around the globe
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 336
- Erscheinungstermin: 12. Mai 2006
- Englisch
- Abmessung: 243mm x 169mm x 22mm
- Gewicht: 645g
- ISBN-13: 9780470864654
- ISBN-10: 0470864656
- Artikelnr.: 20834020
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 336
- Erscheinungstermin: 12. Mai 2006
- Englisch
- Abmessung: 243mm x 169mm x 22mm
- Gewicht: 645g
- ISBN-13: 9780470864654
- ISBN-10: 0470864656
- Artikelnr.: 20834020
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Jonathan E. Martin is a Professor in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin-Madison where he has taught since 1994. He has received numerous accolades for his teaching including the Underkofler Excellence in Teaching Award and is a Fellow in the Teaching Academy of the University of Wisconsin. His teaching excellence is allied with research expertise in the study of mid-latitude weather systems. Professor Martin has published extensively in scholarly journals and was awarded the distinction of being named a Mark H. Ingraham Distinguished Faculty Member by the College of Letters and Science at UW-Madison.
Preface.
Acknowledgments.
1. Introduction and Review of Mathematical Tools.
Objectives.
1.1 Fluids and the nature of fluid dynamics.
1.2 Review of useful mathematical tools.
1.2.1 Elements of vector calculus.
1.2.2 The Taylor series expansion.
1.2.3 Centred difference approximations to derivatives.
1.2.4 Temporal changes of a continuous variable.
1.3 Estimating with scale analysis.
1.4 Basic kinematics of fluids.
1.4.1 Pure vorticity.
1.4.2 Pure divergence.
1.4.3 Pure stretching deformation.
1.4.4 Pure shearing deformation.
1.5 Mensuration.
Selected references.
Problems.
Solutions.
2. Fundamental and Apparent Forces.
Objectives.
2.1 The fundamental forces.
2.1.1 The pressure gradient force.
2.1.2 The gravitational force.
2.1.3 The frictional force.
2.2 Apparent forces.
2.2.1 The centrifugal force.
2.2.2 The Coriolis force.
Selected references.
Problems.
Solutions.
3. Mass, Momentum, and Energy: The Fundamental Quantities of the Physical
World.
Objectives.
3.1 Mass in the Atmosphere.
3.1.1 The hypsometric equation.
3.2 Conservation of momentum: The equations of motion.
3.2.1 The equations of motion in spherical coordinates.
3.2.2 Conservation of mass.
3.3 Conservation of energy: The energy equation.
Selected references.
Problems.
Solutions.
4. Applications of the Equations of Motion.
Objectives.
4.1 Pressure as a vertical coordinate.
4.2 Potential temperature as a vertical coordinate.
4.3 The thermal wind balance.
4.4 Natural coordinates and balanced flows.
4.4.1 Geostrophic flow.
4.4.2 Inertial flow.
4.4.3 Cyclostrophic flow.
4.4.4 Gradient flow.
4.5 The relationship between trajectories and streamlines.
Selected references.
Problems.
Solutions.
5. Circulation, Vorticity, and Divergence.
Objectives.
5.1 The Circulation theorem and its physical interpretation.
5.2 Vorticity and potential vorticity.
5.3 The relationship between vorticity and divergence.
5.4 The quasi-geostrophic system of equations.
Selected references.
Problems.
Solutions.
6. The Diagnosis of Mid-Latitude Synoptic-Scale Vertical Motions.
Objectives.
6.1 The nature of the ageostrophic wind: Isolating the acceleration vector.
6.1.1 Sutcliffe's expression for net ageostrophic divergence in a column.
6.1.2 Another perspective on the ageostrophic wind.
6.2 The Sutcliffe development theorem.
6.3 The quasi-geostrophic omega equation.
6.4 The Q_-vector.
6.4.1 The geostrophic pradox and its resolution.
6.4.2 A natural coordinate version of the _Q-vector.
6.4.3 The along- and across-isentrope components of _Q.
Selected references.
Problems.
Solutions.
7. The Vertical Circulation at Fronts.
Objectives.
7.1 The structural and dynamical characteristics of mid-latitude fronts.
7.2 Frontogenesis and vertical motions.
7.3 The semi-geostrophic equations.
7.4 Upper-level frontogenesis.
7.5 Precipitation processes at fronts.
Selected references.
Problems.
Solutions.
8. Dynamical Aspects of the Life Cycle of the Mid-Latitude Cyclone.
Objectives.
8.1 Introduction: The polar front theory of cyclones.
8.2 Basic structural and energetic characteristics of the cyclone.
8.3 The cyclogenesis stage: The QG tendency equation perspective.
8.4 The cyclogenesis stage: The QG omega equation perspective.
8.5 The cyclogenetic influence of diabatic processes: Explosive
cyclogenesis.
8.6 The post-mature stage: Characteristic thermal structure.
8.7 The post-mature stage: The QG dynamics of the occluded quadrant.
8.8 The Decay Stage.
Selected references.
Problems.
Solutions.
9. Potential Vorticity and Applications to Mid-Latitude Weather Systems.
Objectives.
9.1 Potential vorticity and isentropic divergence.
9.2 Characteristics of a positive PV anomaly.
9.3 Cyclogenesis from the PV perspective.
9.4 The influence of diabatic heating on PV.
9.5 Additional applications of the PV perspective.
9.5.1 Piecewise PV inversion and some applications.
9.5.2 A PV perspective on occlusion.
9.5.3 A PV perspective on leeside cyclogenesis.
9.5.4 The effects of PV superposition and attenuation.
Selected references.
Problems.
Solutions.
Appendix A: Virtual Temperature.
Bibliography.
Index.
Acknowledgments.
1. Introduction and Review of Mathematical Tools.
Objectives.
1.1 Fluids and the nature of fluid dynamics.
1.2 Review of useful mathematical tools.
1.2.1 Elements of vector calculus.
1.2.2 The Taylor series expansion.
1.2.3 Centred difference approximations to derivatives.
1.2.4 Temporal changes of a continuous variable.
1.3 Estimating with scale analysis.
1.4 Basic kinematics of fluids.
1.4.1 Pure vorticity.
1.4.2 Pure divergence.
1.4.3 Pure stretching deformation.
1.4.4 Pure shearing deformation.
1.5 Mensuration.
Selected references.
Problems.
Solutions.
2. Fundamental and Apparent Forces.
Objectives.
2.1 The fundamental forces.
2.1.1 The pressure gradient force.
2.1.2 The gravitational force.
2.1.3 The frictional force.
2.2 Apparent forces.
2.2.1 The centrifugal force.
2.2.2 The Coriolis force.
Selected references.
Problems.
Solutions.
3. Mass, Momentum, and Energy: The Fundamental Quantities of the Physical
World.
Objectives.
3.1 Mass in the Atmosphere.
3.1.1 The hypsometric equation.
3.2 Conservation of momentum: The equations of motion.
3.2.1 The equations of motion in spherical coordinates.
3.2.2 Conservation of mass.
3.3 Conservation of energy: The energy equation.
Selected references.
Problems.
Solutions.
4. Applications of the Equations of Motion.
Objectives.
4.1 Pressure as a vertical coordinate.
4.2 Potential temperature as a vertical coordinate.
4.3 The thermal wind balance.
4.4 Natural coordinates and balanced flows.
4.4.1 Geostrophic flow.
4.4.2 Inertial flow.
4.4.3 Cyclostrophic flow.
4.4.4 Gradient flow.
4.5 The relationship between trajectories and streamlines.
Selected references.
Problems.
Solutions.
5. Circulation, Vorticity, and Divergence.
Objectives.
5.1 The Circulation theorem and its physical interpretation.
5.2 Vorticity and potential vorticity.
5.3 The relationship between vorticity and divergence.
5.4 The quasi-geostrophic system of equations.
Selected references.
Problems.
Solutions.
6. The Diagnosis of Mid-Latitude Synoptic-Scale Vertical Motions.
Objectives.
6.1 The nature of the ageostrophic wind: Isolating the acceleration vector.
6.1.1 Sutcliffe's expression for net ageostrophic divergence in a column.
6.1.2 Another perspective on the ageostrophic wind.
6.2 The Sutcliffe development theorem.
6.3 The quasi-geostrophic omega equation.
6.4 The Q_-vector.
6.4.1 The geostrophic pradox and its resolution.
6.4.2 A natural coordinate version of the _Q-vector.
6.4.3 The along- and across-isentrope components of _Q.
Selected references.
Problems.
Solutions.
7. The Vertical Circulation at Fronts.
Objectives.
7.1 The structural and dynamical characteristics of mid-latitude fronts.
7.2 Frontogenesis and vertical motions.
7.3 The semi-geostrophic equations.
7.4 Upper-level frontogenesis.
7.5 Precipitation processes at fronts.
Selected references.
Problems.
Solutions.
8. Dynamical Aspects of the Life Cycle of the Mid-Latitude Cyclone.
Objectives.
8.1 Introduction: The polar front theory of cyclones.
8.2 Basic structural and energetic characteristics of the cyclone.
8.3 The cyclogenesis stage: The QG tendency equation perspective.
8.4 The cyclogenesis stage: The QG omega equation perspective.
8.5 The cyclogenetic influence of diabatic processes: Explosive
cyclogenesis.
8.6 The post-mature stage: Characteristic thermal structure.
8.7 The post-mature stage: The QG dynamics of the occluded quadrant.
8.8 The Decay Stage.
Selected references.
Problems.
Solutions.
9. Potential Vorticity and Applications to Mid-Latitude Weather Systems.
Objectives.
9.1 Potential vorticity and isentropic divergence.
9.2 Characteristics of a positive PV anomaly.
9.3 Cyclogenesis from the PV perspective.
9.4 The influence of diabatic heating on PV.
9.5 Additional applications of the PV perspective.
9.5.1 Piecewise PV inversion and some applications.
9.5.2 A PV perspective on occlusion.
9.5.3 A PV perspective on leeside cyclogenesis.
9.5.4 The effects of PV superposition and attenuation.
Selected references.
Problems.
Solutions.
Appendix A: Virtual Temperature.
Bibliography.
Index.
Preface.
Acknowledgments.
1. Introduction and Review of Mathematical Tools.
Objectives.
1.1 Fluids and the nature of fluid dynamics.
1.2 Review of useful mathematical tools.
1.2.1 Elements of vector calculus.
1.2.2 The Taylor series expansion.
1.2.3 Centred difference approximations to derivatives.
1.2.4 Temporal changes of a continuous variable.
1.3 Estimating with scale analysis.
1.4 Basic kinematics of fluids.
1.4.1 Pure vorticity.
1.4.2 Pure divergence.
1.4.3 Pure stretching deformation.
1.4.4 Pure shearing deformation.
1.5 Mensuration.
Selected references.
Problems.
Solutions.
2. Fundamental and Apparent Forces.
Objectives.
2.1 The fundamental forces.
2.1.1 The pressure gradient force.
2.1.2 The gravitational force.
2.1.3 The frictional force.
2.2 Apparent forces.
2.2.1 The centrifugal force.
2.2.2 The Coriolis force.
Selected references.
Problems.
Solutions.
3. Mass, Momentum, and Energy: The Fundamental Quantities of the Physical
World.
Objectives.
3.1 Mass in the Atmosphere.
3.1.1 The hypsometric equation.
3.2 Conservation of momentum: The equations of motion.
3.2.1 The equations of motion in spherical coordinates.
3.2.2 Conservation of mass.
3.3 Conservation of energy: The energy equation.
Selected references.
Problems.
Solutions.
4. Applications of the Equations of Motion.
Objectives.
4.1 Pressure as a vertical coordinate.
4.2 Potential temperature as a vertical coordinate.
4.3 The thermal wind balance.
4.4 Natural coordinates and balanced flows.
4.4.1 Geostrophic flow.
4.4.2 Inertial flow.
4.4.3 Cyclostrophic flow.
4.4.4 Gradient flow.
4.5 The relationship between trajectories and streamlines.
Selected references.
Problems.
Solutions.
5. Circulation, Vorticity, and Divergence.
Objectives.
5.1 The Circulation theorem and its physical interpretation.
5.2 Vorticity and potential vorticity.
5.3 The relationship between vorticity and divergence.
5.4 The quasi-geostrophic system of equations.
Selected references.
Problems.
Solutions.
6. The Diagnosis of Mid-Latitude Synoptic-Scale Vertical Motions.
Objectives.
6.1 The nature of the ageostrophic wind: Isolating the acceleration vector.
6.1.1 Sutcliffe's expression for net ageostrophic divergence in a column.
6.1.2 Another perspective on the ageostrophic wind.
6.2 The Sutcliffe development theorem.
6.3 The quasi-geostrophic omega equation.
6.4 The Q_-vector.
6.4.1 The geostrophic pradox and its resolution.
6.4.2 A natural coordinate version of the _Q-vector.
6.4.3 The along- and across-isentrope components of _Q.
Selected references.
Problems.
Solutions.
7. The Vertical Circulation at Fronts.
Objectives.
7.1 The structural and dynamical characteristics of mid-latitude fronts.
7.2 Frontogenesis and vertical motions.
7.3 The semi-geostrophic equations.
7.4 Upper-level frontogenesis.
7.5 Precipitation processes at fronts.
Selected references.
Problems.
Solutions.
8. Dynamical Aspects of the Life Cycle of the Mid-Latitude Cyclone.
Objectives.
8.1 Introduction: The polar front theory of cyclones.
8.2 Basic structural and energetic characteristics of the cyclone.
8.3 The cyclogenesis stage: The QG tendency equation perspective.
8.4 The cyclogenesis stage: The QG omega equation perspective.
8.5 The cyclogenetic influence of diabatic processes: Explosive
cyclogenesis.
8.6 The post-mature stage: Characteristic thermal structure.
8.7 The post-mature stage: The QG dynamics of the occluded quadrant.
8.8 The Decay Stage.
Selected references.
Problems.
Solutions.
9. Potential Vorticity and Applications to Mid-Latitude Weather Systems.
Objectives.
9.1 Potential vorticity and isentropic divergence.
9.2 Characteristics of a positive PV anomaly.
9.3 Cyclogenesis from the PV perspective.
9.4 The influence of diabatic heating on PV.
9.5 Additional applications of the PV perspective.
9.5.1 Piecewise PV inversion and some applications.
9.5.2 A PV perspective on occlusion.
9.5.3 A PV perspective on leeside cyclogenesis.
9.5.4 The effects of PV superposition and attenuation.
Selected references.
Problems.
Solutions.
Appendix A: Virtual Temperature.
Bibliography.
Index.
Acknowledgments.
1. Introduction and Review of Mathematical Tools.
Objectives.
1.1 Fluids and the nature of fluid dynamics.
1.2 Review of useful mathematical tools.
1.2.1 Elements of vector calculus.
1.2.2 The Taylor series expansion.
1.2.3 Centred difference approximations to derivatives.
1.2.4 Temporal changes of a continuous variable.
1.3 Estimating with scale analysis.
1.4 Basic kinematics of fluids.
1.4.1 Pure vorticity.
1.4.2 Pure divergence.
1.4.3 Pure stretching deformation.
1.4.4 Pure shearing deformation.
1.5 Mensuration.
Selected references.
Problems.
Solutions.
2. Fundamental and Apparent Forces.
Objectives.
2.1 The fundamental forces.
2.1.1 The pressure gradient force.
2.1.2 The gravitational force.
2.1.3 The frictional force.
2.2 Apparent forces.
2.2.1 The centrifugal force.
2.2.2 The Coriolis force.
Selected references.
Problems.
Solutions.
3. Mass, Momentum, and Energy: The Fundamental Quantities of the Physical
World.
Objectives.
3.1 Mass in the Atmosphere.
3.1.1 The hypsometric equation.
3.2 Conservation of momentum: The equations of motion.
3.2.1 The equations of motion in spherical coordinates.
3.2.2 Conservation of mass.
3.3 Conservation of energy: The energy equation.
Selected references.
Problems.
Solutions.
4. Applications of the Equations of Motion.
Objectives.
4.1 Pressure as a vertical coordinate.
4.2 Potential temperature as a vertical coordinate.
4.3 The thermal wind balance.
4.4 Natural coordinates and balanced flows.
4.4.1 Geostrophic flow.
4.4.2 Inertial flow.
4.4.3 Cyclostrophic flow.
4.4.4 Gradient flow.
4.5 The relationship between trajectories and streamlines.
Selected references.
Problems.
Solutions.
5. Circulation, Vorticity, and Divergence.
Objectives.
5.1 The Circulation theorem and its physical interpretation.
5.2 Vorticity and potential vorticity.
5.3 The relationship between vorticity and divergence.
5.4 The quasi-geostrophic system of equations.
Selected references.
Problems.
Solutions.
6. The Diagnosis of Mid-Latitude Synoptic-Scale Vertical Motions.
Objectives.
6.1 The nature of the ageostrophic wind: Isolating the acceleration vector.
6.1.1 Sutcliffe's expression for net ageostrophic divergence in a column.
6.1.2 Another perspective on the ageostrophic wind.
6.2 The Sutcliffe development theorem.
6.3 The quasi-geostrophic omega equation.
6.4 The Q_-vector.
6.4.1 The geostrophic pradox and its resolution.
6.4.2 A natural coordinate version of the _Q-vector.
6.4.3 The along- and across-isentrope components of _Q.
Selected references.
Problems.
Solutions.
7. The Vertical Circulation at Fronts.
Objectives.
7.1 The structural and dynamical characteristics of mid-latitude fronts.
7.2 Frontogenesis and vertical motions.
7.3 The semi-geostrophic equations.
7.4 Upper-level frontogenesis.
7.5 Precipitation processes at fronts.
Selected references.
Problems.
Solutions.
8. Dynamical Aspects of the Life Cycle of the Mid-Latitude Cyclone.
Objectives.
8.1 Introduction: The polar front theory of cyclones.
8.2 Basic structural and energetic characteristics of the cyclone.
8.3 The cyclogenesis stage: The QG tendency equation perspective.
8.4 The cyclogenesis stage: The QG omega equation perspective.
8.5 The cyclogenetic influence of diabatic processes: Explosive
cyclogenesis.
8.6 The post-mature stage: Characteristic thermal structure.
8.7 The post-mature stage: The QG dynamics of the occluded quadrant.
8.8 The Decay Stage.
Selected references.
Problems.
Solutions.
9. Potential Vorticity and Applications to Mid-Latitude Weather Systems.
Objectives.
9.1 Potential vorticity and isentropic divergence.
9.2 Characteristics of a positive PV anomaly.
9.3 Cyclogenesis from the PV perspective.
9.4 The influence of diabatic heating on PV.
9.5 Additional applications of the PV perspective.
9.5.1 Piecewise PV inversion and some applications.
9.5.2 A PV perspective on occlusion.
9.5.3 A PV perspective on leeside cyclogenesis.
9.5.4 The effects of PV superposition and attenuation.
Selected references.
Problems.
Solutions.
Appendix A: Virtual Temperature.
Bibliography.
Index.