- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Foreword from Arogyaswami Paulraj, Professor (Emeritus), Stanford University (USA)
Andere Kunden interessierten sich auch für
- Tony J RouphaelRF and Digital Signal Processing for Software-Defined Radio91,99 €
- Mainak ChowdhuryWireless Communication96,99 €
- Tania StathakiImage Fusion172,99 €
- Robert W StewartSoftware Defined Radio using MATLAB & Simulink and the RTL-SDR72,99 €
- Innovative Smart Healthcare and Bio-Medical Systems63,99 €
- Ali N AkansuMultiresolution Signal Decomposition170,99 €
- Modeling, Simulation and Visualization Methods112,99 €
-
-
-
Foreword from Arogyaswami Paulraj, Professor (Emeritus), Stanford University (USA)
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Elsevier Science
- Seitenzahl: 360
- Erscheinungstermin: 1. November 2010
- Englisch
- Gewicht: 450g
- ISBN-13: 9781493301225
- ISBN-10: 1493301225
- Artikelnr.: 41644626
- Verlag: Elsevier Science
- Seitenzahl: 360
- Erscheinungstermin: 1. November 2010
- Englisch
- Gewicht: 450g
- ISBN-13: 9781493301225
- ISBN-10: 1493301225
- Artikelnr.: 41644626
ForewordPrefaceAbout the Editors, Authors and ContributorsIntroductionPart
I MIMO Fundamentals Chapter 1 A Short Introduction to MIMO Information
Theory 1.1 The Shannon-Wiener Legacy: From 1948 to 2008 1.2 Preliminaries
1.3 Information Theoretic Aspects 1.4 Signal Processing Aspects 1.5 Wiener
vs. Shannon: An Ever Closer Union Chapter 2 MIMO Propagation and Channel
Modeling 2.1 Introduction 2.2 Model Classification 2.3 Parameters of the
MIMO Radio Channel 2.4 CSI and Channel Randomness 2.5 What Kind of
Correlation in MIMO? 2.6 MIMO Measurements 2.7 What Makes a Good Channel
Model? 2.8 Examples of MIMO Radio Channel Models 2.9 Some Conclusions
Acknowledgment Chapter 3 Space Time Codes and MIMO Transmission 3.1
Introduction 3.2 Diversity and Multiplexing Gain 3.3 Theory of Space-time
Coding 3.4 Space-time Code 3.5 Spatial Multiplexing 3.6 Precoding 3.7 MIMO
in Current and Emerging Standards 3.8 Summary Chapter 4 Interference
Functions - A Mathematical Framework for MIMO Interference Networks 4.1
Multiuser Channels 4.2 A General Framework for Optimizing Interference
Networks 4.3 Joint Interference Mitigation and Resource Allocation 4.4
Implementation AspectsPart II Implementation Chapter 5 Advanced Transmitter
and Receiver Design 5.1 Introduction 5.2 Turbo Equalization 5.3 Turbo
Equalization on Frequency-Selective MIMO Channels 5.4 Turbo Synchronization
5.5 Turbo Synchronization on Frequency-Selective MIMO Channels Chapter 6
Implementing Scalable List Detectors for MIMO-SDM in LTE 6.1 Introduction
6.2 Radius-Based Detector Algorithm 6.3 Mapping of the Radius-Based
Detector 6.4 SSFE Detector 6.5 Conclusions Chapter 7 IEEE 802.11n
Implementation 7.1 IEEE 802.11n PHY Layer Introduction 7.2 IEEE 802.11n
Transmitter Part 7.3 IEEE 802.11n Receiver Part 7.4 Simulation Results 7.5
Conclusion Chapter 8 WiMAX Implementation 8.1 Introduction 8.2 Existing
Schemes in IEEE 802.16e 8.3 MIMO Candidates for IEEE 802.16m 8.4 UL-MIMO
Schemes in WiMAX Systems 8.5 Cyclic Delay Diversity (CDD) 8.6 Tile-Switched
Diversity (TSD) 8.7 Performance 8.8 Potential Impacts on Architecture 8.9
Conclusions Chapter 9 LTE and LTE-Advanced 9.1 Transmission Structure 9.1.1
LTE Downlink 9.1.2 LTE Uplink 9.2 LTE MIMO Schemes 9.3 LTE-Advanced MIMO
Schemes Chapter 10 Multiple Antenna Terminals 10.1 Size-Performance Trade
Off 10.2 Performance of Compact Design 10.3 Compact Design Techniques -
Antenna Decoupling 10.4 Compact Design Techniques - Antenna/Channel
Matching 10.5 Related Issues and Future Outlook 10.6 Conclusions 10.7
Acknowledgment Chapter 11 Conclusion: MIMO Roadmaps 11.1 Systems and
Roadmaps 11.2 A Bird's Eye View on Current and Future Prospects for
MIMOList of SymbolsList of AcronymsReferencesIndex
I MIMO Fundamentals Chapter 1 A Short Introduction to MIMO Information
Theory 1.1 The Shannon-Wiener Legacy: From 1948 to 2008 1.2 Preliminaries
1.3 Information Theoretic Aspects 1.4 Signal Processing Aspects 1.5 Wiener
vs. Shannon: An Ever Closer Union Chapter 2 MIMO Propagation and Channel
Modeling 2.1 Introduction 2.2 Model Classification 2.3 Parameters of the
MIMO Radio Channel 2.4 CSI and Channel Randomness 2.5 What Kind of
Correlation in MIMO? 2.6 MIMO Measurements 2.7 What Makes a Good Channel
Model? 2.8 Examples of MIMO Radio Channel Models 2.9 Some Conclusions
Acknowledgment Chapter 3 Space Time Codes and MIMO Transmission 3.1
Introduction 3.2 Diversity and Multiplexing Gain 3.3 Theory of Space-time
Coding 3.4 Space-time Code 3.5 Spatial Multiplexing 3.6 Precoding 3.7 MIMO
in Current and Emerging Standards 3.8 Summary Chapter 4 Interference
Functions - A Mathematical Framework for MIMO Interference Networks 4.1
Multiuser Channels 4.2 A General Framework for Optimizing Interference
Networks 4.3 Joint Interference Mitigation and Resource Allocation 4.4
Implementation AspectsPart II Implementation Chapter 5 Advanced Transmitter
and Receiver Design 5.1 Introduction 5.2 Turbo Equalization 5.3 Turbo
Equalization on Frequency-Selective MIMO Channels 5.4 Turbo Synchronization
5.5 Turbo Synchronization on Frequency-Selective MIMO Channels Chapter 6
Implementing Scalable List Detectors for MIMO-SDM in LTE 6.1 Introduction
6.2 Radius-Based Detector Algorithm 6.3 Mapping of the Radius-Based
Detector 6.4 SSFE Detector 6.5 Conclusions Chapter 7 IEEE 802.11n
Implementation 7.1 IEEE 802.11n PHY Layer Introduction 7.2 IEEE 802.11n
Transmitter Part 7.3 IEEE 802.11n Receiver Part 7.4 Simulation Results 7.5
Conclusion Chapter 8 WiMAX Implementation 8.1 Introduction 8.2 Existing
Schemes in IEEE 802.16e 8.3 MIMO Candidates for IEEE 802.16m 8.4 UL-MIMO
Schemes in WiMAX Systems 8.5 Cyclic Delay Diversity (CDD) 8.6 Tile-Switched
Diversity (TSD) 8.7 Performance 8.8 Potential Impacts on Architecture 8.9
Conclusions Chapter 9 LTE and LTE-Advanced 9.1 Transmission Structure 9.1.1
LTE Downlink 9.1.2 LTE Uplink 9.2 LTE MIMO Schemes 9.3 LTE-Advanced MIMO
Schemes Chapter 10 Multiple Antenna Terminals 10.1 Size-Performance Trade
Off 10.2 Performance of Compact Design 10.3 Compact Design Techniques -
Antenna Decoupling 10.4 Compact Design Techniques - Antenna/Channel
Matching 10.5 Related Issues and Future Outlook 10.6 Conclusions 10.7
Acknowledgment Chapter 11 Conclusion: MIMO Roadmaps 11.1 Systems and
Roadmaps 11.2 A Bird's Eye View on Current and Future Prospects for
MIMOList of SymbolsList of AcronymsReferencesIndex
ForewordPrefaceAbout the Editors, Authors and ContributorsIntroductionPart
I MIMO Fundamentals Chapter 1 A Short Introduction to MIMO Information
Theory 1.1 The Shannon-Wiener Legacy: From 1948 to 2008 1.2 Preliminaries
1.3 Information Theoretic Aspects 1.4 Signal Processing Aspects 1.5 Wiener
vs. Shannon: An Ever Closer Union Chapter 2 MIMO Propagation and Channel
Modeling 2.1 Introduction 2.2 Model Classification 2.3 Parameters of the
MIMO Radio Channel 2.4 CSI and Channel Randomness 2.5 What Kind of
Correlation in MIMO? 2.6 MIMO Measurements 2.7 What Makes a Good Channel
Model? 2.8 Examples of MIMO Radio Channel Models 2.9 Some Conclusions
Acknowledgment Chapter 3 Space Time Codes and MIMO Transmission 3.1
Introduction 3.2 Diversity and Multiplexing Gain 3.3 Theory of Space-time
Coding 3.4 Space-time Code 3.5 Spatial Multiplexing 3.6 Precoding 3.7 MIMO
in Current and Emerging Standards 3.8 Summary Chapter 4 Interference
Functions - A Mathematical Framework for MIMO Interference Networks 4.1
Multiuser Channels 4.2 A General Framework for Optimizing Interference
Networks 4.3 Joint Interference Mitigation and Resource Allocation 4.4
Implementation AspectsPart II Implementation Chapter 5 Advanced Transmitter
and Receiver Design 5.1 Introduction 5.2 Turbo Equalization 5.3 Turbo
Equalization on Frequency-Selective MIMO Channels 5.4 Turbo Synchronization
5.5 Turbo Synchronization on Frequency-Selective MIMO Channels Chapter 6
Implementing Scalable List Detectors for MIMO-SDM in LTE 6.1 Introduction
6.2 Radius-Based Detector Algorithm 6.3 Mapping of the Radius-Based
Detector 6.4 SSFE Detector 6.5 Conclusions Chapter 7 IEEE 802.11n
Implementation 7.1 IEEE 802.11n PHY Layer Introduction 7.2 IEEE 802.11n
Transmitter Part 7.3 IEEE 802.11n Receiver Part 7.4 Simulation Results 7.5
Conclusion Chapter 8 WiMAX Implementation 8.1 Introduction 8.2 Existing
Schemes in IEEE 802.16e 8.3 MIMO Candidates for IEEE 802.16m 8.4 UL-MIMO
Schemes in WiMAX Systems 8.5 Cyclic Delay Diversity (CDD) 8.6 Tile-Switched
Diversity (TSD) 8.7 Performance 8.8 Potential Impacts on Architecture 8.9
Conclusions Chapter 9 LTE and LTE-Advanced 9.1 Transmission Structure 9.1.1
LTE Downlink 9.1.2 LTE Uplink 9.2 LTE MIMO Schemes 9.3 LTE-Advanced MIMO
Schemes Chapter 10 Multiple Antenna Terminals 10.1 Size-Performance Trade
Off 10.2 Performance of Compact Design 10.3 Compact Design Techniques -
Antenna Decoupling 10.4 Compact Design Techniques - Antenna/Channel
Matching 10.5 Related Issues and Future Outlook 10.6 Conclusions 10.7
Acknowledgment Chapter 11 Conclusion: MIMO Roadmaps 11.1 Systems and
Roadmaps 11.2 A Bird's Eye View on Current and Future Prospects for
MIMOList of SymbolsList of AcronymsReferencesIndex
I MIMO Fundamentals Chapter 1 A Short Introduction to MIMO Information
Theory 1.1 The Shannon-Wiener Legacy: From 1948 to 2008 1.2 Preliminaries
1.3 Information Theoretic Aspects 1.4 Signal Processing Aspects 1.5 Wiener
vs. Shannon: An Ever Closer Union Chapter 2 MIMO Propagation and Channel
Modeling 2.1 Introduction 2.2 Model Classification 2.3 Parameters of the
MIMO Radio Channel 2.4 CSI and Channel Randomness 2.5 What Kind of
Correlation in MIMO? 2.6 MIMO Measurements 2.7 What Makes a Good Channel
Model? 2.8 Examples of MIMO Radio Channel Models 2.9 Some Conclusions
Acknowledgment Chapter 3 Space Time Codes and MIMO Transmission 3.1
Introduction 3.2 Diversity and Multiplexing Gain 3.3 Theory of Space-time
Coding 3.4 Space-time Code 3.5 Spatial Multiplexing 3.6 Precoding 3.7 MIMO
in Current and Emerging Standards 3.8 Summary Chapter 4 Interference
Functions - A Mathematical Framework for MIMO Interference Networks 4.1
Multiuser Channels 4.2 A General Framework for Optimizing Interference
Networks 4.3 Joint Interference Mitigation and Resource Allocation 4.4
Implementation AspectsPart II Implementation Chapter 5 Advanced Transmitter
and Receiver Design 5.1 Introduction 5.2 Turbo Equalization 5.3 Turbo
Equalization on Frequency-Selective MIMO Channels 5.4 Turbo Synchronization
5.5 Turbo Synchronization on Frequency-Selective MIMO Channels Chapter 6
Implementing Scalable List Detectors for MIMO-SDM in LTE 6.1 Introduction
6.2 Radius-Based Detector Algorithm 6.3 Mapping of the Radius-Based
Detector 6.4 SSFE Detector 6.5 Conclusions Chapter 7 IEEE 802.11n
Implementation 7.1 IEEE 802.11n PHY Layer Introduction 7.2 IEEE 802.11n
Transmitter Part 7.3 IEEE 802.11n Receiver Part 7.4 Simulation Results 7.5
Conclusion Chapter 8 WiMAX Implementation 8.1 Introduction 8.2 Existing
Schemes in IEEE 802.16e 8.3 MIMO Candidates for IEEE 802.16m 8.4 UL-MIMO
Schemes in WiMAX Systems 8.5 Cyclic Delay Diversity (CDD) 8.6 Tile-Switched
Diversity (TSD) 8.7 Performance 8.8 Potential Impacts on Architecture 8.9
Conclusions Chapter 9 LTE and LTE-Advanced 9.1 Transmission Structure 9.1.1
LTE Downlink 9.1.2 LTE Uplink 9.2 LTE MIMO Schemes 9.3 LTE-Advanced MIMO
Schemes Chapter 10 Multiple Antenna Terminals 10.1 Size-Performance Trade
Off 10.2 Performance of Compact Design 10.3 Compact Design Techniques -
Antenna Decoupling 10.4 Compact Design Techniques - Antenna/Channel
Matching 10.5 Related Issues and Future Outlook 10.6 Conclusions 10.7
Acknowledgment Chapter 11 Conclusion: MIMO Roadmaps 11.1 Systems and
Roadmaps 11.2 A Bird's Eye View on Current and Future Prospects for
MIMOList of SymbolsList of AcronymsReferencesIndex