Sixteen years have passed since human aquaporin-1 (AQP1) was discovered as the first water channel, facilitating trans-membrane water fluxes. Subsequent years of research showed that the water channel AQP1 was only the tip of an iceberg; the iceberg itself being the ubiquitous super family of membrane intrinsic proteins (MIPs) that facilitate trans-membrane transport of water and an increasing number of small, water-soluble and uncharged compounds. Here we introduce you to the superfamily of MIPs and provide a summary about our gradually refined understanding of the phylogenetic relationship…mehr
Sixteen years have passed since human aquaporin-1 (AQP1) was discovered as the first water channel, facilitating trans-membrane water fluxes. Subsequent years of research showed that the water channel AQP1 was only the tip of an iceberg; the iceberg itself being the ubiquitous super family of membrane intrinsic proteins (MIPs) that facilitate trans-membrane transport of water and an increasing number of small, water-soluble and uncharged compounds. Here we introduce you to the superfamily of MIPs and provide a summary about our gradually refined understanding of the phylogenetic relationship of its members. This volume is dedicated to the metalloids, a recently discovered group of substrates for a number of specific MIPs in a diverse spectrum of organisms. Particular focus is given to the essential boron, the beneficial silicon and the highly toxic arsenic. The respective MIP isoforms that facilitate the transport of these metalloids include members from several clades of the phylogenetic tree, suggesting that metalloid transport is an ancient function within this family of channel proteins. Among all the various substrates that have been shown to be transported by MIPs, metalloids take an outstanding position. While water transport seems to be a common function of many MIPs, single isoforms in plants have been identified as being crucially important for the uptake of boric acid as well as silicic acid. Here, the function seems not to be redundant, as mutations in those genes render plants deficient in boron and silicon, respectively.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: 80012450, 978-1-4419-6314-7
Seitenzahl: 145
Erscheinungstermin: 5. Mai 2010
Englisch
Abmessung: 262mm x 174mm x 15mm
Gewicht: 430g
ISBN-13: 9781441963147
ISBN-10: 1441963146
Artikelnr.: 29022360
Herstellerkennzeichnung
Libri GmbH
Europaallee 1
36244 Bad Hersfeld
06621 890
Autorenporträt
Thomas P. Jahn is an Associate Professor and group leader at the Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen. He studied biology at the University of Bonn, Germany. From early on in his scientific career he was interested in transport processes in plants and the molecular mechanisms behind these processes. More recently his group contributed to the field of aquaporin research culminating in the identification of several new substrates for members of this superfamily of channel proteins. The overall scope of his current research focuses on the elucidation of networks comprising molecular components engaged in the responses to nutritional stresses, including elements of transport, assimilation, storage and stress signaling. Gerd P. Bienert is currently a Marie Curie Fellow at the Institute of Life Science at the Université Catholique de Louvain in Louvain la Neuve, Belgium. His work focuses on the molecular characterisation of the intracellular trafficking and heteröoligomerisation of aquaporins in plants. In 2008, he received his PhD in Molecular Plant Nutrition from the University of Copenhagen, Denmark. During his PhD, Gerd Patrick Bienert made significant advances in the scientific understanding on the substrate selectivity of plant aquaporins for uncharged solutes. The work resulted in the molecular identification of the first arsenite, antimonite and hydrogen peroxide channels in plants. Gerd P. Bienert studied biology at the Julius¿Maximilians¿University Würzburg and at the Technical University Darmstadt, Germany. During his education he emphasized molecular plant physiology and biophysics, genetics and biotechnology. His main research interests focus on the molecular transmembrane transport processes involved in the uptake, translocation and extrusion of compounds that are relevant for plant physiology. In addition, intracellular regulation and trafficking of the transport proteins themselves are alsocontemplated. In his home region, Tauber¿Franken, he began to develop his enthusiastic curiosity for biology by exploring and studying nature. He became fascinated by insects, especially the members of the order of hymenoptera to which he still devotes his free¿time. The existing overlap between entomology and botany has aroused his interest in understanding the physiology of plants.
Inhaltsangabe
Aquaporins: A Family of Highly Regulated Multifunctional Channels.- Phylogeny of Major Intrinsic Proteins.- Metalloids, Soil Chemistry and the Environment.- Arsenic Transport in Prokaryotes and Eukaryotic Microbes.- Metalloid Transport by Aquaglyceroporins: Consequences in the Treatment of Human Diseases.- Roles of Vertebrate Aquaglyceroporins in Arsenic Transport and Detoxification.- Molecular Mechanisms of Boron Transport in Plants: Involvement of Arabidopsis NIP5;1 and NIP6;1.- Silicon Transporters in Higher Plants.- Major Intrinsic Proteins and Arsenic Transport in Plants: New Players and Their Potential Role.- Major Intrinsic Proteins in Biomimetic Membranes.
Aquaporins: A Family of Highly Regulated Multifunctional Channels.- Phylogeny of Major Intrinsic Proteins.- Metalloids, Soil Chemistry and the Environment.- Arsenic Transport in Prokaryotes and Eukaryotic Microbes.- Metalloid Transport by Aquaglyceroporins: Consequences in the Treatment of Human Diseases.- Roles of Vertebrate Aquaglyceroporins in Arsenic Transport and Detoxification.- Molecular Mechanisms of Boron Transport in Plants: Involvement of Arabidopsis NIP5;1 and NIP6;1.- Silicon Transporters in Higher Plants.- Major Intrinsic Proteins and Arsenic Transport in Plants: New Players and Their Potential Role.- Major Intrinsic Proteins in Biomimetic Membranes.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826