- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.
Andere Kunden interessierten sich auch für
- V. ThomeeGalerkin Finite Element Methods for Parabolic Problems42,99 €
- Vidar ThomeeGalerkin Finite Element Methods for Parabolic Problems132,99 €
- Yalchin EfendievMultiscale Finite Element Methods42,99 €
- Vivette GiraultFinite Element Methods for Navier-Stokes Equations75,99 €
- Vivette GiraultFinite Element Approximation of the Navier-Stokes Equations46,99 €
- Lars WahlbinSuperconvergence in Galerkin Finite Element Methods30,99 €
- Granville SewellAnalysis of a Finite Element Method83,99 €
-
-
-
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Springer Series in Computational Mathematics 15
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4612-7824-5
- Softcover reprint of the original 1st ed. 1991
- Seitenzahl: 368
- Erscheinungstermin: 17. September 2011
- Englisch
- Abmessung: 235mm x 155mm x 20mm
- Gewicht: 580g
- ISBN-13: 9781461278245
- ISBN-10: 1461278244
- Artikelnr.: 36116917
- Springer Series in Computational Mathematics 15
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4612-7824-5
- Softcover reprint of the original 1st ed. 1991
- Seitenzahl: 368
- Erscheinungstermin: 17. September 2011
- Englisch
- Abmessung: 235mm x 155mm x 20mm
- Gewicht: 580g
- ISBN-13: 9781461278245
- ISBN-10: 1461278244
- Artikelnr.: 36116917
I: Variational Formulations and Finite Element Methods.- 1. Classical Methods.- 2. Model Problems and Elementary Properties of Some Functional Spaces.- 3. Duality Methods.- 4. Domain Decomposition Methods, Hybrid Methods.- 5. Augmented Variational Formulations.- 6. Transposition Methods.- 7. Bibliographical remarks.- II: Approximation of Saddle Point Problems.- 1. Existence and Uniqueness of Solutions.- 2. Approximation of the Problem.- 3. Numerical Properties of the Discrete Problem.- 4. Solution by Penalty Methods, Convergence of Regularized Problems.- 5. Iterative Solution Methods. Uzawa's Algorithm.- 6. Concluding Remarks.- III: Function Spaces and Finite Element Approximations.- 1. Properties of the spaces Hs(?) and H(div; ?).- 2. Finite Element Approximations of H1(?) and H2(?).- 3. Approximations of H (div; ?).- 4. Concluding Remarks.- IV: Various Examples.- 1. Nonstandard Methods for Dirichlet's Problem.- 2. Stokes Problem.- 3. Elasticity Problems.- 4. A Mixed Fourth-Order Problem.- 5. Dual Hybrid Methods for Plate Bending Problems.- V: Complements on Mixed Methods for Elliptic Problems.- 1. Numerical Solutions.- 2. A Brief Analysis of the Computational Effort.- 3. Error Analysis for the Multiplier.- 4. Error Estimates in Other Norms.- 5. Application to an Equation Arising from Semiconductor Theory.- 6. How Things Can Go Wrong.- 7. Augmented Formulations.- VI: Incompressible Materials and Flow Problems.- 1. Introduction.- 2. The Stokes Problem as a Mixed Problem.- 3. Examples of Elements for Incompressible Materials.- 4. Standard Techniques of Proof for the inf-sup Condition.- 5. Macroelement Techniques and Spurious Pressure Modes.- 6. An Alternative Technique of Proof and Generalized Taylor-Hood Element.- 7. Nearly Incompressible Elasticity, Reduced Integration Methods and Relation with Penalty Methods.- 8. Divergence-Free Basis, Discrete Stream Functions.- 9. Other Mixed and Hybrid Methods for Incompressible Flows.- VII: Other Applications.- 1. Mixed Methods for Linear Thin Plates.- 2. Mixed Methods for Linear Elasticity Problems.- 3. Moderately Thick Plates.- References.
I: Variational Formulations and Finite Element Methods.- 1. Classical Methods.- 2. Model Problems and Elementary Properties of Some Functional Spaces.- 3. Duality Methods.- 4. Domain Decomposition Methods, Hybrid Methods.- 5. Augmented Variational Formulations.- 6. Transposition Methods.- 7. Bibliographical remarks.- II: Approximation of Saddle Point Problems.- 1. Existence and Uniqueness of Solutions.- 2. Approximation of the Problem.- 3. Numerical Properties of the Discrete Problem.- 4. Solution by Penalty Methods, Convergence of Regularized Problems.- 5. Iterative Solution Methods. Uzawa's Algorithm.- 6. Concluding Remarks.- III: Function Spaces and Finite Element Approximations.- 1. Properties of the spaces Hs(?) and H(div; ?).- 2. Finite Element Approximations of H1(?) and H2(?).- 3. Approximations of H (div; ?).- 4. Concluding Remarks.- IV: Various Examples.- 1. Nonstandard Methods for Dirichlet's Problem.- 2. Stokes Problem.- 3. Elasticity Problems.- 4. A Mixed Fourth-Order Problem.- 5. Dual Hybrid Methods for Plate Bending Problems.- V: Complements on Mixed Methods for Elliptic Problems.- 1. Numerical Solutions.- 2. A Brief Analysis of the Computational Effort.- 3. Error Analysis for the Multiplier.- 4. Error Estimates in Other Norms.- 5. Application to an Equation Arising from Semiconductor Theory.- 6. How Things Can Go Wrong.- 7. Augmented Formulations.- VI: Incompressible Materials and Flow Problems.- 1. Introduction.- 2. The Stokes Problem as a Mixed Problem.- 3. Examples of Elements for Incompressible Materials.- 4. Standard Techniques of Proof for the inf-sup Condition.- 5. Macroelement Techniques and Spurious Pressure Modes.- 6. An Alternative Technique of Proof and Generalized Taylor-Hood Element.- 7. Nearly Incompressible Elasticity, Reduced Integration Methods and Relation with Penalty Methods.- 8. Divergence-Free Basis, Discrete Stream Functions.- 9. Other Mixed and Hybrid Methods for Incompressible Flows.- VII: Other Applications.- 1. Mixed Methods for Linear Thin Plates.- 2. Mixed Methods for Linear Elasticity Problems.- 3. Moderately Thick Plates.- References.