Model Theory with Applications to Algebra and Analysis
Volume 1
Herausgeber: Chatzidakis, Zoe; Pillay, Anand; Macpherson, Dugald
Model Theory with Applications to Algebra and Analysis
Volume 1
Herausgeber: Chatzidakis, Zoe; Pillay, Anand; Macpherson, Dugald
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Account of current research in model theory and its connections with algebra and analysis; contributions from leaders in the field.
Andere Kunden interessierten sich auch für
- J. D. Lamb / D. A. Preece (eds.)Surveys in Combinatorics, 199982,99 €
- J. Siemons (ed.)Surveys in Combinatorics, 198968,99 €
- E. F. AssmusDesigns and Their Codes68,99 €
- M. M. Deza / P. Frankl / I. G. Rosenberg (eds.)Algebraic, Extremal, and Metric Combinatorics, 198682,99 €
- Handbook of the Tutte Polynomial and Related Topics74,99 €
- Xing ZhouMore on Counting (Advanced Patterns and Techniques): Math for Gifted Students27,99 €
- J. Richard HollosCombinatorics II Problems and Solutions: Counting Patterns19,99 €
-
-
-
Account of current research in model theory and its connections with algebra and analysis; contributions from leaders in the field.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 352
- Erscheinungstermin: 11. April 2014
- Englisch
- Abmessung: 229mm x 152mm x 21mm
- Gewicht: 572g
- ISBN-13: 9780521694841
- ISBN-10: 0521694841
- Artikelnr.: 24926765
- Verlag: Cambridge University Press
- Seitenzahl: 352
- Erscheinungstermin: 11. April 2014
- Englisch
- Abmessung: 229mm x 152mm x 21mm
- Gewicht: 572g
- ISBN-13: 9780521694841
- ISBN-10: 0521694841
- Artikelnr.: 24926765
Preface; List of contributors; 1. Model theory and stability theory, with
applications in differential algebra and algebraic geometry Anand Pillay;
2. Differential algebra and generalizations of Grothendieck's conjecture on
the arithmetic of linear differential equations Anand Pillay; 3. Schanuel's
conjecture for non-isoconstant elliptic curves over function fields Daniel
Bertrand; 4. An afterthought on the generalized Mordell-Lang conjecture
Damian Rössler; 5. On the definitions of Difference Galois Groups Zoé
Chatzidakis, Charlotte Hardouin and Michael F. Singer; 6. Differentially
valued fields are not differentially closed Thomas Scanlon; 7. Complex
analytic geometry in a nonstandard setting Ya'acov Peterzil and Sergei
Starchenko; 8. Model theory and Kähler geometry Rahim Moosa and Anand
Pillay; 9. Some local definability theory for holomorphic functions A. J.
Wilkie; 10. Some observations about the real and imaginary parts of complex
Pfaffian functions Angus Macintyre; 11. Fusion of structures of finite
Morley rank Martin Ziegler; 12.Establishing the o-minimality for expansions
of the real field Jean-Philippe Rolin; 13. On the tomography theorem by P.
Schapira Sergei Starchenko; 14. A class of quantum Zariski geometries Boris
Zilber; 15. Model theory guidance in number theory? Ivan Fesenko.
applications in differential algebra and algebraic geometry Anand Pillay;
2. Differential algebra and generalizations of Grothendieck's conjecture on
the arithmetic of linear differential equations Anand Pillay; 3. Schanuel's
conjecture for non-isoconstant elliptic curves over function fields Daniel
Bertrand; 4. An afterthought on the generalized Mordell-Lang conjecture
Damian Rössler; 5. On the definitions of Difference Galois Groups Zoé
Chatzidakis, Charlotte Hardouin and Michael F. Singer; 6. Differentially
valued fields are not differentially closed Thomas Scanlon; 7. Complex
analytic geometry in a nonstandard setting Ya'acov Peterzil and Sergei
Starchenko; 8. Model theory and Kähler geometry Rahim Moosa and Anand
Pillay; 9. Some local definability theory for holomorphic functions A. J.
Wilkie; 10. Some observations about the real and imaginary parts of complex
Pfaffian functions Angus Macintyre; 11. Fusion of structures of finite
Morley rank Martin Ziegler; 12.Establishing the o-minimality for expansions
of the real field Jean-Philippe Rolin; 13. On the tomography theorem by P.
Schapira Sergei Starchenko; 14. A class of quantum Zariski geometries Boris
Zilber; 15. Model theory guidance in number theory? Ivan Fesenko.
Preface; List of contributors; 1. Model theory and stability theory, with
applications in differential algebra and algebraic geometry Anand Pillay;
2. Differential algebra and generalizations of Grothendieck's conjecture on
the arithmetic of linear differential equations Anand Pillay; 3. Schanuel's
conjecture for non-isoconstant elliptic curves over function fields Daniel
Bertrand; 4. An afterthought on the generalized Mordell-Lang conjecture
Damian Rössler; 5. On the definitions of Difference Galois Groups Zoé
Chatzidakis, Charlotte Hardouin and Michael F. Singer; 6. Differentially
valued fields are not differentially closed Thomas Scanlon; 7. Complex
analytic geometry in a nonstandard setting Ya'acov Peterzil and Sergei
Starchenko; 8. Model theory and Kähler geometry Rahim Moosa and Anand
Pillay; 9. Some local definability theory for holomorphic functions A. J.
Wilkie; 10. Some observations about the real and imaginary parts of complex
Pfaffian functions Angus Macintyre; 11. Fusion of structures of finite
Morley rank Martin Ziegler; 12.Establishing the o-minimality for expansions
of the real field Jean-Philippe Rolin; 13. On the tomography theorem by P.
Schapira Sergei Starchenko; 14. A class of quantum Zariski geometries Boris
Zilber; 15. Model theory guidance in number theory? Ivan Fesenko.
applications in differential algebra and algebraic geometry Anand Pillay;
2. Differential algebra and generalizations of Grothendieck's conjecture on
the arithmetic of linear differential equations Anand Pillay; 3. Schanuel's
conjecture for non-isoconstant elliptic curves over function fields Daniel
Bertrand; 4. An afterthought on the generalized Mordell-Lang conjecture
Damian Rössler; 5. On the definitions of Difference Galois Groups Zoé
Chatzidakis, Charlotte Hardouin and Michael F. Singer; 6. Differentially
valued fields are not differentially closed Thomas Scanlon; 7. Complex
analytic geometry in a nonstandard setting Ya'acov Peterzil and Sergei
Starchenko; 8. Model theory and Kähler geometry Rahim Moosa and Anand
Pillay; 9. Some local definability theory for holomorphic functions A. J.
Wilkie; 10. Some observations about the real and imaginary parts of complex
Pfaffian functions Angus Macintyre; 11. Fusion of structures of finite
Morley rank Martin Ziegler; 12.Establishing the o-minimality for expansions
of the real field Jean-Philippe Rolin; 13. On the tomography theorem by P.
Schapira Sergei Starchenko; 14. A class of quantum Zariski geometries Boris
Zilber; 15. Model theory guidance in number theory? Ivan Fesenko.