Modeling and Nonlinear Robust Control of Delta-Like Parallel Kinematic Manipulators deals with the modeling and control of parallel robots. The book's content will benefit students, researchers and engineers in robotics by providing a simplified methodology to obtain the dynamic model of parallel robots with a delta-type architecture. Moreover, this methodology is compatible with the real-time implementation of model-based and robust control schemes. And, it can easily extend the proposed robust control solutions to other robotic architectures.
Modeling and Nonlinear Robust Control of Delta-Like Parallel Kinematic Manipulators deals with the modeling and control of parallel robots. The book's content will benefit students, researchers and engineers in robotics by providing a simplified methodology to obtain the dynamic model of parallel robots with a delta-type architecture. Moreover, this methodology is compatible with the real-time implementation of model-based and robust control schemes. And, it can easily extend the proposed robust control solutions to other robotic architectures.
Produktdetails
Produktdetails
Emerging Methodologies and Applications in Modelling, Identification and Control
Jonatan Martin Escorcia Hernández received his B.Sc in Robotic Engineering, M.Sc. in Automation and Control, and Ph.D. in Optomechatronics from the Polytechnic University of Tulancingo (UPT), Tulancingo de Bravo, Mexico in 2013, 2017, and 2020, respectively. He is currently working as a part time professor at the UPT, teaching classes in robotics engineering. His research interests include modeling, mechanical design, and nonlinear control of robotics systems.
Inhaltsangabe
1. Introduction 2. Literature review about modelling and control of PKMs 3. Description and Modelling of Experimental platforms 4. Proposed Robust Control Solutions 5. Numerical simulations and Real-time experiments General Conclusion Appendices A Proof of lemma 1 B Trajectory points for SPIDER4 B1 Trajectory points for Scenario 1 B2 Trajectory points for scenario 2
1. Introduction 2. Literature review about modelling and control of PKMs 3. Description and Modelling of Experimental platforms 4. Proposed Robust Control Solutions 5. Numerical simulations and Real-time experiments General Conclusion Appendices A Proof of lemma 1 B Trajectory points for SPIDER4 B1 Trajectory points for Scenario 1 B2 Trajectory points for scenario 2
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826