Geoffrey J Pert
Modelling and Simulation in Plasma Physics for Physicists and Mathematicians
Geoffrey J Pert
Modelling and Simulation in Plasma Physics for Physicists and Mathematicians
- Gebundenes Buch
Andere Kunden interessierten sich auch für
- G. J. PertFoundations of Plasma Physics for Physicists and Mathematicians128,99 €
- Marc GilliozConformal Field Theory for Particle Physicists33,99 €
- Tatsuo KobayashiAn Introduction to Non-Abelian Discrete Symmetries for Particle Physicists59,99 €
- W Tom WenckebachEssentials of Semiconductor Physics354,99 €
- Andre MolitonSolid-State Physics for Electronics297,99 €
- Zhaolin GuElectrification of Particulates in Industrial and Natural Multiphase flows74,99 €
- SurkoNew Directions in Antimatter Chemistry and Physics245,99 €
-
-
-
Produktdetails
- Verlag: Wiley
- Seitenzahl: 288
- Erscheinungstermin: 10. Juni 2024
- Englisch
- Abmessung: 244mm x 170mm x 18mm
- Gewicht: 649g
- ISBN-13: 9781394239207
- ISBN-10: 1394239203
- Artikelnr.: 69973177
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Geoffrey Pert, PhD, is Emeritus Professor, Department of Physics, University of York, UK. He has continuously been involved in research in plasma physics, primarily the interaction of high-power lasers with materials, since first studying the subject as a research student in the 1960's. Professor Pert is also a Fellow of the Royal Society.
Preface xiii
Acknowledgements xvii
Preamble 1
Part I Continuum Methods 5
1 Foundations of Computational Fluid Mechanics 7
1.1 Basic Concepts of Fluid Mechanics 7
1.2 The Basic Equations of Fluid Mechanics 8
1.3 Ideal (Dissipationless) Flow -- Hyperbolic Equations 9
1.4 Formal Solution 11
1.5 Discontinuities 12
1.6 Plasma Fluid Dynamics 14
1.7 Basic Principles of Finite Differencing 15
1.8 Conservative Finite-Difference Approximations 19
1.9 Numerical Fluid Approximations 21
1.10 Grid Geometry 22
1.11 Control Volume Differencing 22
1.12 Mesh Types 24
2 Analytic and Quasi-Analytic Approximations 29
2.1 Analytic and Quasi-Analytic Methods 29
3 Numerical Fluid Dynamics in the Eulerian Scheme 41
3.1 An Introduction to Steady-State Engineering Design Models 41
3.2 Spatial Differencing 45
3.3 Generalised Euler Schemes 49
4 Lagrangian Systems 75
4.1 Lagrangian Fluid Dynamics 75
4.2 One-Dimensional von Neumann--Richtmyer Algorithm 76
4.3 Multidimensional Lagrangian Schemes 80
4.4 Choice of Method 88
5 Arbitrary Lagrangian--Eulerian Schemes 89
5.1 Introduction 89
5.2 Step 1: The Lagrangian Stage 91
5.3 Step 2: The Iteration Stage 91
5.4 Step 3: Mesh Generation 92
5.5 Step 4: Re-zoning 92
6 Hybrid or 11/2 d Schemes 95
6.1 Introduction 95
7 Magneto-Hydrodynamics 105
7.1 Introduction 105
7.2 The MHD Equations 106
7.3 MHD Equations 112
7.4 Conjugate Conservative Operators 114
7.5 Finite-Difference Approximations 115
7.6 Cylindrical Geometry -- Self-Generated Magnetic Fields 116
Part II Particle Methods 119
8 Particle in Cell Simulations 121
8.1 Introduction 121
Part III Stochastic Methods 135
9 Monte Carlo Schemes 137
9.1 Monte Carlo Methods 137
9.2 Monte Carlo Integration 143
9.3 RandomWalks 145
9.4 Nuclear Reactor Criticality 145
9.5 Thermodynamic Properties and Equation of State 151
10 Numerical Diffusion Schemes 167
10.1 Introduction 167
10.2 Split-Time-Step and ADI Methods for Solving Diffusion Problems in
Orthogonal Cartesian Grid Systems 169
10.3 The Diffusion Matrix 174
11 Ion--Electron Equilibration 185
12 Ionisation--Recombination Models 187
12.1 Introduction 187
12.2 Collisional-Radiative Model 188
12.3 Two-Stage Model 202
References 247
Index 251
Acknowledgements xvii
Preamble 1
Part I Continuum Methods 5
1 Foundations of Computational Fluid Mechanics 7
1.1 Basic Concepts of Fluid Mechanics 7
1.2 The Basic Equations of Fluid Mechanics 8
1.3 Ideal (Dissipationless) Flow -- Hyperbolic Equations 9
1.4 Formal Solution 11
1.5 Discontinuities 12
1.6 Plasma Fluid Dynamics 14
1.7 Basic Principles of Finite Differencing 15
1.8 Conservative Finite-Difference Approximations 19
1.9 Numerical Fluid Approximations 21
1.10 Grid Geometry 22
1.11 Control Volume Differencing 22
1.12 Mesh Types 24
2 Analytic and Quasi-Analytic Approximations 29
2.1 Analytic and Quasi-Analytic Methods 29
3 Numerical Fluid Dynamics in the Eulerian Scheme 41
3.1 An Introduction to Steady-State Engineering Design Models 41
3.2 Spatial Differencing 45
3.3 Generalised Euler Schemes 49
4 Lagrangian Systems 75
4.1 Lagrangian Fluid Dynamics 75
4.2 One-Dimensional von Neumann--Richtmyer Algorithm 76
4.3 Multidimensional Lagrangian Schemes 80
4.4 Choice of Method 88
5 Arbitrary Lagrangian--Eulerian Schemes 89
5.1 Introduction 89
5.2 Step 1: The Lagrangian Stage 91
5.3 Step 2: The Iteration Stage 91
5.4 Step 3: Mesh Generation 92
5.5 Step 4: Re-zoning 92
6 Hybrid or 11/2 d Schemes 95
6.1 Introduction 95
7 Magneto-Hydrodynamics 105
7.1 Introduction 105
7.2 The MHD Equations 106
7.3 MHD Equations 112
7.4 Conjugate Conservative Operators 114
7.5 Finite-Difference Approximations 115
7.6 Cylindrical Geometry -- Self-Generated Magnetic Fields 116
Part II Particle Methods 119
8 Particle in Cell Simulations 121
8.1 Introduction 121
Part III Stochastic Methods 135
9 Monte Carlo Schemes 137
9.1 Monte Carlo Methods 137
9.2 Monte Carlo Integration 143
9.3 RandomWalks 145
9.4 Nuclear Reactor Criticality 145
9.5 Thermodynamic Properties and Equation of State 151
10 Numerical Diffusion Schemes 167
10.1 Introduction 167
10.2 Split-Time-Step and ADI Methods for Solving Diffusion Problems in
Orthogonal Cartesian Grid Systems 169
10.3 The Diffusion Matrix 174
11 Ion--Electron Equilibration 185
12 Ionisation--Recombination Models 187
12.1 Introduction 187
12.2 Collisional-Radiative Model 188
12.3 Two-Stage Model 202
References 247
Index 251
Preface xiii
Acknowledgements xvii
Preamble 1
Part I Continuum Methods 5
1 Foundations of Computational Fluid Mechanics 7
1.1 Basic Concepts of Fluid Mechanics 7
1.2 The Basic Equations of Fluid Mechanics 8
1.3 Ideal (Dissipationless) Flow -- Hyperbolic Equations 9
1.4 Formal Solution 11
1.5 Discontinuities 12
1.6 Plasma Fluid Dynamics 14
1.7 Basic Principles of Finite Differencing 15
1.8 Conservative Finite-Difference Approximations 19
1.9 Numerical Fluid Approximations 21
1.10 Grid Geometry 22
1.11 Control Volume Differencing 22
1.12 Mesh Types 24
2 Analytic and Quasi-Analytic Approximations 29
2.1 Analytic and Quasi-Analytic Methods 29
3 Numerical Fluid Dynamics in the Eulerian Scheme 41
3.1 An Introduction to Steady-State Engineering Design Models 41
3.2 Spatial Differencing 45
3.3 Generalised Euler Schemes 49
4 Lagrangian Systems 75
4.1 Lagrangian Fluid Dynamics 75
4.2 One-Dimensional von Neumann--Richtmyer Algorithm 76
4.3 Multidimensional Lagrangian Schemes 80
4.4 Choice of Method 88
5 Arbitrary Lagrangian--Eulerian Schemes 89
5.1 Introduction 89
5.2 Step 1: The Lagrangian Stage 91
5.3 Step 2: The Iteration Stage 91
5.4 Step 3: Mesh Generation 92
5.5 Step 4: Re-zoning 92
6 Hybrid or 11/2 d Schemes 95
6.1 Introduction 95
7 Magneto-Hydrodynamics 105
7.1 Introduction 105
7.2 The MHD Equations 106
7.3 MHD Equations 112
7.4 Conjugate Conservative Operators 114
7.5 Finite-Difference Approximations 115
7.6 Cylindrical Geometry -- Self-Generated Magnetic Fields 116
Part II Particle Methods 119
8 Particle in Cell Simulations 121
8.1 Introduction 121
Part III Stochastic Methods 135
9 Monte Carlo Schemes 137
9.1 Monte Carlo Methods 137
9.2 Monte Carlo Integration 143
9.3 RandomWalks 145
9.4 Nuclear Reactor Criticality 145
9.5 Thermodynamic Properties and Equation of State 151
10 Numerical Diffusion Schemes 167
10.1 Introduction 167
10.2 Split-Time-Step and ADI Methods for Solving Diffusion Problems in
Orthogonal Cartesian Grid Systems 169
10.3 The Diffusion Matrix 174
11 Ion--Electron Equilibration 185
12 Ionisation--Recombination Models 187
12.1 Introduction 187
12.2 Collisional-Radiative Model 188
12.3 Two-Stage Model 202
References 247
Index 251
Acknowledgements xvii
Preamble 1
Part I Continuum Methods 5
1 Foundations of Computational Fluid Mechanics 7
1.1 Basic Concepts of Fluid Mechanics 7
1.2 The Basic Equations of Fluid Mechanics 8
1.3 Ideal (Dissipationless) Flow -- Hyperbolic Equations 9
1.4 Formal Solution 11
1.5 Discontinuities 12
1.6 Plasma Fluid Dynamics 14
1.7 Basic Principles of Finite Differencing 15
1.8 Conservative Finite-Difference Approximations 19
1.9 Numerical Fluid Approximations 21
1.10 Grid Geometry 22
1.11 Control Volume Differencing 22
1.12 Mesh Types 24
2 Analytic and Quasi-Analytic Approximations 29
2.1 Analytic and Quasi-Analytic Methods 29
3 Numerical Fluid Dynamics in the Eulerian Scheme 41
3.1 An Introduction to Steady-State Engineering Design Models 41
3.2 Spatial Differencing 45
3.3 Generalised Euler Schemes 49
4 Lagrangian Systems 75
4.1 Lagrangian Fluid Dynamics 75
4.2 One-Dimensional von Neumann--Richtmyer Algorithm 76
4.3 Multidimensional Lagrangian Schemes 80
4.4 Choice of Method 88
5 Arbitrary Lagrangian--Eulerian Schemes 89
5.1 Introduction 89
5.2 Step 1: The Lagrangian Stage 91
5.3 Step 2: The Iteration Stage 91
5.4 Step 3: Mesh Generation 92
5.5 Step 4: Re-zoning 92
6 Hybrid or 11/2 d Schemes 95
6.1 Introduction 95
7 Magneto-Hydrodynamics 105
7.1 Introduction 105
7.2 The MHD Equations 106
7.3 MHD Equations 112
7.4 Conjugate Conservative Operators 114
7.5 Finite-Difference Approximations 115
7.6 Cylindrical Geometry -- Self-Generated Magnetic Fields 116
Part II Particle Methods 119
8 Particle in Cell Simulations 121
8.1 Introduction 121
Part III Stochastic Methods 135
9 Monte Carlo Schemes 137
9.1 Monte Carlo Methods 137
9.2 Monte Carlo Integration 143
9.3 RandomWalks 145
9.4 Nuclear Reactor Criticality 145
9.5 Thermodynamic Properties and Equation of State 151
10 Numerical Diffusion Schemes 167
10.1 Introduction 167
10.2 Split-Time-Step and ADI Methods for Solving Diffusion Problems in
Orthogonal Cartesian Grid Systems 169
10.3 The Diffusion Matrix 174
11 Ion--Electron Equilibration 185
12 Ionisation--Recombination Models 187
12.1 Introduction 187
12.2 Collisional-Radiative Model 188
12.3 Two-Stage Model 202
References 247
Index 251