Modelling Perception with Artificial Neural Networks
Herausgeber: Tosh, Colin. R
Modelling Perception with Artificial Neural Networks
Herausgeber: Tosh, Colin. R
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A complete review of neural network models; a modern, powerful and successful tool for studying animal perception.
Andere Kunden interessierten sich auch für
- Donna L HudsonNeural Networks and Artificial Intelligence for Biomedical Engineering256,99 €
- Artificial Neural Networks66,99 €
- Artificial Neural Networks132,99 €
- Artificial Neural Networks95,99 €
- David J. Livingstone (ed.)Artificial Neural Networks74,99 €
- Supercomputing in Brain Research: From Tomography to Neural Networks - Proceedings of the Workshop183,99 €
- Allen SelverstonModel Neural Networks and Behavior42,99 €
-
-
-
A complete review of neural network models; a modern, powerful and successful tool for studying animal perception.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 408
- Erscheinungstermin: 24. Juni 2010
- Englisch
- Abmessung: 250mm x 175mm x 26mm
- Gewicht: 880g
- ISBN-13: 9780521763950
- ISBN-10: 0521763959
- Artikelnr.: 29931908
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 408
- Erscheinungstermin: 24. Juni 2010
- Englisch
- Abmessung: 250mm x 175mm x 26mm
- Gewicht: 880g
- ISBN-13: 9780521763950
- ISBN-10: 0521763959
- Artikelnr.: 29931908
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Introduction. Modelling perception with artificial neural networks; Part I.
General Themes: 1. Neural networks for perceptual processing: from
simulation tools to theories K. Gurney; 2. Sensory ecology and perceptual
allocation: new prospects for neural networks Steven M. Phelps; Part II.
The Use of Artificial Neural Networks to Elucidate the Nature of Perceptual
Processes in Animals: 3. Correlation versus gradient type motion detectors:
the pros and cons A. Borst; 4. Spatial constancy and the brain: insights
from neural networks R. L. White III and L. H. Snyder; 5. The interplay of
Pavlovian and instrumental processes in devaluation experiments: a
computational embodied neuroscience model tested with a simulated rat F.
Mannella, M. Mirolli and G. Baldassarre; 6. Evolution, (sequential)
learning and generalization in modular and nonmodular visual neural
networks R. Calabretta; 7. Effects of network structure on associative
memory H. Oshima and T. Odagaki; 8. Neural networks and neuro-oncology L.
Douw, C. J. Stam, M. Klein, J. J. Heimans and J. C. Reijneveld; Part III.
Artificial Neural Networks as Models of Perceptual Processing in Ecology
and Evolutionary Biology: 9. Evolutionary diversification of mating
behaviour: using artificial neural networks to study reproductive character
displacement and speciation K. S. Pfennig and M. J. Ryan; 10. Applying
artificial neural networks to the study of prey coloration S. Merilaita;
11. Artificial neural networks in models of specialization, guild evolution
and sympatric speciation N. M. A. Holmgren, N. Norrstrom and W. M. Getz;
12. Probabilistic design principles for robust multimodal communication
networks D. C. Krakauer, J. Flack and N. Ay; 13. Movement-based signalling
and the physical world: modelling the changing perceptual task for
receivers R. A. Peters; Part IV. Methodological Issues in the Use of Simple
Feedforward Networks: 14. How training and testing histories affect
generalization: a test of simple neural networks S. Ghirlanda and M.
Enquist; 15. The need for stochastic replication of ecological neural
networks C. R. Tosh and G. D. Ruxton; 16. Methodological issues in
modelling ecological learning with neural networks D. W. Franks and G. D.
Ruxton; 17. Neural network evolution and artificial life research D. Curran
and C. O'Riordan; 18. Current velocity shapes the functional connectivity
of benthiscapes to stream insect movement J. D. Olden; 19. A model
biological neural network: the cephalopod vestibular system R. Williamson
and A. Chrachri.
General Themes: 1. Neural networks for perceptual processing: from
simulation tools to theories K. Gurney; 2. Sensory ecology and perceptual
allocation: new prospects for neural networks Steven M. Phelps; Part II.
The Use of Artificial Neural Networks to Elucidate the Nature of Perceptual
Processes in Animals: 3. Correlation versus gradient type motion detectors:
the pros and cons A. Borst; 4. Spatial constancy and the brain: insights
from neural networks R. L. White III and L. H. Snyder; 5. The interplay of
Pavlovian and instrumental processes in devaluation experiments: a
computational embodied neuroscience model tested with a simulated rat F.
Mannella, M. Mirolli and G. Baldassarre; 6. Evolution, (sequential)
learning and generalization in modular and nonmodular visual neural
networks R. Calabretta; 7. Effects of network structure on associative
memory H. Oshima and T. Odagaki; 8. Neural networks and neuro-oncology L.
Douw, C. J. Stam, M. Klein, J. J. Heimans and J. C. Reijneveld; Part III.
Artificial Neural Networks as Models of Perceptual Processing in Ecology
and Evolutionary Biology: 9. Evolutionary diversification of mating
behaviour: using artificial neural networks to study reproductive character
displacement and speciation K. S. Pfennig and M. J. Ryan; 10. Applying
artificial neural networks to the study of prey coloration S. Merilaita;
11. Artificial neural networks in models of specialization, guild evolution
and sympatric speciation N. M. A. Holmgren, N. Norrstrom and W. M. Getz;
12. Probabilistic design principles for robust multimodal communication
networks D. C. Krakauer, J. Flack and N. Ay; 13. Movement-based signalling
and the physical world: modelling the changing perceptual task for
receivers R. A. Peters; Part IV. Methodological Issues in the Use of Simple
Feedforward Networks: 14. How training and testing histories affect
generalization: a test of simple neural networks S. Ghirlanda and M.
Enquist; 15. The need for stochastic replication of ecological neural
networks C. R. Tosh and G. D. Ruxton; 16. Methodological issues in
modelling ecological learning with neural networks D. W. Franks and G. D.
Ruxton; 17. Neural network evolution and artificial life research D. Curran
and C. O'Riordan; 18. Current velocity shapes the functional connectivity
of benthiscapes to stream insect movement J. D. Olden; 19. A model
biological neural network: the cephalopod vestibular system R. Williamson
and A. Chrachri.
Introduction. Modelling perception with artificial neural networks; Part I.
General Themes: 1. Neural networks for perceptual processing: from
simulation tools to theories K. Gurney; 2. Sensory ecology and perceptual
allocation: new prospects for neural networks Steven M. Phelps; Part II.
The Use of Artificial Neural Networks to Elucidate the Nature of Perceptual
Processes in Animals: 3. Correlation versus gradient type motion detectors:
the pros and cons A. Borst; 4. Spatial constancy and the brain: insights
from neural networks R. L. White III and L. H. Snyder; 5. The interplay of
Pavlovian and instrumental processes in devaluation experiments: a
computational embodied neuroscience model tested with a simulated rat F.
Mannella, M. Mirolli and G. Baldassarre; 6. Evolution, (sequential)
learning and generalization in modular and nonmodular visual neural
networks R. Calabretta; 7. Effects of network structure on associative
memory H. Oshima and T. Odagaki; 8. Neural networks and neuro-oncology L.
Douw, C. J. Stam, M. Klein, J. J. Heimans and J. C. Reijneveld; Part III.
Artificial Neural Networks as Models of Perceptual Processing in Ecology
and Evolutionary Biology: 9. Evolutionary diversification of mating
behaviour: using artificial neural networks to study reproductive character
displacement and speciation K. S. Pfennig and M. J. Ryan; 10. Applying
artificial neural networks to the study of prey coloration S. Merilaita;
11. Artificial neural networks in models of specialization, guild evolution
and sympatric speciation N. M. A. Holmgren, N. Norrstrom and W. M. Getz;
12. Probabilistic design principles for robust multimodal communication
networks D. C. Krakauer, J. Flack and N. Ay; 13. Movement-based signalling
and the physical world: modelling the changing perceptual task for
receivers R. A. Peters; Part IV. Methodological Issues in the Use of Simple
Feedforward Networks: 14. How training and testing histories affect
generalization: a test of simple neural networks S. Ghirlanda and M.
Enquist; 15. The need for stochastic replication of ecological neural
networks C. R. Tosh and G. D. Ruxton; 16. Methodological issues in
modelling ecological learning with neural networks D. W. Franks and G. D.
Ruxton; 17. Neural network evolution and artificial life research D. Curran
and C. O'Riordan; 18. Current velocity shapes the functional connectivity
of benthiscapes to stream insect movement J. D. Olden; 19. A model
biological neural network: the cephalopod vestibular system R. Williamson
and A. Chrachri.
General Themes: 1. Neural networks for perceptual processing: from
simulation tools to theories K. Gurney; 2. Sensory ecology and perceptual
allocation: new prospects for neural networks Steven M. Phelps; Part II.
The Use of Artificial Neural Networks to Elucidate the Nature of Perceptual
Processes in Animals: 3. Correlation versus gradient type motion detectors:
the pros and cons A. Borst; 4. Spatial constancy and the brain: insights
from neural networks R. L. White III and L. H. Snyder; 5. The interplay of
Pavlovian and instrumental processes in devaluation experiments: a
computational embodied neuroscience model tested with a simulated rat F.
Mannella, M. Mirolli and G. Baldassarre; 6. Evolution, (sequential)
learning and generalization in modular and nonmodular visual neural
networks R. Calabretta; 7. Effects of network structure on associative
memory H. Oshima and T. Odagaki; 8. Neural networks and neuro-oncology L.
Douw, C. J. Stam, M. Klein, J. J. Heimans and J. C. Reijneveld; Part III.
Artificial Neural Networks as Models of Perceptual Processing in Ecology
and Evolutionary Biology: 9. Evolutionary diversification of mating
behaviour: using artificial neural networks to study reproductive character
displacement and speciation K. S. Pfennig and M. J. Ryan; 10. Applying
artificial neural networks to the study of prey coloration S. Merilaita;
11. Artificial neural networks in models of specialization, guild evolution
and sympatric speciation N. M. A. Holmgren, N. Norrstrom and W. M. Getz;
12. Probabilistic design principles for robust multimodal communication
networks D. C. Krakauer, J. Flack and N. Ay; 13. Movement-based signalling
and the physical world: modelling the changing perceptual task for
receivers R. A. Peters; Part IV. Methodological Issues in the Use of Simple
Feedforward Networks: 14. How training and testing histories affect
generalization: a test of simple neural networks S. Ghirlanda and M.
Enquist; 15. The need for stochastic replication of ecological neural
networks C. R. Tosh and G. D. Ruxton; 16. Methodological issues in
modelling ecological learning with neural networks D. W. Franks and G. D.
Ruxton; 17. Neural network evolution and artificial life research D. Curran
and C. O'Riordan; 18. Current velocity shapes the functional connectivity
of benthiscapes to stream insect movement J. D. Olden; 19. A model
biological neural network: the cephalopod vestibular system R. Williamson
and A. Chrachri.