Na indústria da saúde, a grande análise de dados é extremamente importante, evidentemente porque a própria indústria alberga um vasto mar de conjuntos de dados. A análise é utilizada para examinar estes conjuntos de dados e descobrir informações e tendências ocultas, a fim de extrair conhecimentos e antecipar resultados. As actuais abordagens existentes carecem de uma categorização considerável e precisão de previsão, uma vez que a obtenção de dados clínicos e de cuidados de saúde estruturados é morosa e a previsão precisa de doenças utilizando relatórios em tempo real é uma tarefa difícil e computacionalmente intensiva. Por conseguinte, a compreensão dos motivos por detrás das abordagens de aprendizagem automática nos cuidados de saúde é essencial, uma vez que a precisão e exactidão são frequentemente críticas nos problemas dos cuidados de saúde. O objectivo é construir um modelo generalizado de previsão da aprendizagem mecânica clínica utilizando algoritmos de classificação supervisionados, a fim de prever várias doenças de saúde comuns mas graves através de um resultado binário.