193,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers
Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.
Ideal as a textbook for a two-semester
…mehr

Produktbeschreibung
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers

Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.

Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression.

Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
James H. Stapleton, PhD, has recently retired after forty-nine years as professor in the Department of Statistics and Probability at Michigan State University, including eight years as chairperson and almost twenty years as graduate director. Dr. Stapleton is the author of Linear Statistical Models (Wiley), and he received his PhD in mathematical statistics from Purdue University.
Rezensionen
"The whole first part of the book is very reader-friendly and well written." ( CHOICE May 2008) "The prose throughout the book is clear and well aimed at first-year master's student who is intelligent but not yet statistically sophisticated. Examples are clear and well chosen." ( Biometrics , March 2009)