Benjamin S. Baumer (Smith College, Northhampton, MA), Daniel T. Kaplan (Smith College, Northhampton, MA), Nicholas J. Horton (Amherst College, Amherst, MA)
Modern Data Science with R
Benjamin S. Baumer (Smith College, Northhampton, MA), Daniel T. Kaplan (Smith College, Northhampton, MA), Nicholas J. Horton (Amherst College, Amherst, MA)
Modern Data Science with R
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This textbook is designed for an undergraduate course in data science that emphasizes topics in both statistics and computer science.
Andere Kunden interessierten sich auch für
- Darrin Speegle (Department of Mathematics and Statistics Saint LouiProbability, Statistics, and Data117,99 €
- Jerry BonnellExploring Data Science with R and the Tidyverse106,99 €
- Rafael A IrizarryIntroduction to Data Science117,99 €
- Jean-Francois CollardHands-On Data Analysis in R for Finance113,99 €
- Richard McElreath (Max Planck Institute for Evolutionary AnthropoloStatistical Rethinking74,99 €
- Mans ThulinModern Statistics with R90,99 €
- Rafael A. IrizarryIntroduction to Data Science92,99 €
-
-
-
This textbook is designed for an undergraduate course in data science that emphasizes topics in both statistics and computer science.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Chapman & Hall/CRC Texts in Statistical Science
- Verlag: Taylor & Francis Ltd
- 2 ed
- Seitenzahl: 632
- Erscheinungstermin: 14. April 2021
- Englisch
- Abmessung: 260mm x 179mm x 36mm
- Gewicht: 1388g
- ISBN-13: 9780367191498
- ISBN-10: 0367191490
- Artikelnr.: 61649336
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Chapman & Hall/CRC Texts in Statistical Science
- Verlag: Taylor & Francis Ltd
- 2 ed
- Seitenzahl: 632
- Erscheinungstermin: 14. April 2021
- Englisch
- Abmessung: 260mm x 179mm x 36mm
- Gewicht: 1388g
- ISBN-13: 9780367191498
- ISBN-10: 0367191490
- Artikelnr.: 61649336
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Benjamin S. Baumer is an associate professor in the Statistical & Data Sciences program at Smith College. He has been a practicing data scientist since 2004, when he became the first full-time statistical analyst for the New York Mets. Ben is a co-author of The Sabermetric Revolution and Analyzing Baseball Data with R. He received the 2019 Waller Education Award and the 2016 Significant Contributor Award from the Society for American Baseball Research. Daniel T. Kaplan is the DeWitt Wallace emeritus professor of mathematics and computer science at Macalester College. He is the author of several textbooks on statistical modeling and statistical computing. Danny received the 2006 Macalester Excellence in Teaching award and the 2017 CAUSE Lifetime Achievement Award. Nicholas J. Horton is Beitzel Professor of Technology and Society (Statistics and Data Science) at Amherst College. He is a Fellow of the ASA and the AAAS, co-chair of the National Academies Committee on Applied and Theoretical Statistics, recipient of a number of national teaching awards, author of a series of books on statistical computing, and actively involved in data science curriculum efforts to help students "think with data".
I Part I: Introduction to Data Science. 1. Prologue: Why data science? 2.
Data visualization. 3. A grammar for graphics. 4. Data wrangling on one
table. 5. Data wrangling on multiple tables. 6. Tidy data. 7. Iteration. 8.
Data science ethics. II. Part II: Statistics and Modeling. 9. Statistical
foundations. 10. Predictive modeling. 11. Supervised learning. 12.
Unsupervised learning. 13. Simulation. III Part III: Topics in Data
Science. 14. Dynamic and customized data graphics. 15. Database querying
using SQL. 16. Database administration. 17. Working with spatial data.
18.Geospatial computations. 19. Text as data. 20. Network science. IV Part
IV: Appendices.
Data visualization. 3. A grammar for graphics. 4. Data wrangling on one
table. 5. Data wrangling on multiple tables. 6. Tidy data. 7. Iteration. 8.
Data science ethics. II. Part II: Statistics and Modeling. 9. Statistical
foundations. 10. Predictive modeling. 11. Supervised learning. 12.
Unsupervised learning. 13. Simulation. III Part III: Topics in Data
Science. 14. Dynamic and customized data graphics. 15. Database querying
using SQL. 16. Database administration. 17. Working with spatial data.
18.Geospatial computations. 19. Text as data. 20. Network science. IV Part
IV: Appendices.
I Part I: Introduction to Data Science. 1. Prologue: Why data science? 2.
Data visualization. 3. A grammar for graphics. 4. Data wrangling on one
table. 5. Data wrangling on multiple tables. 6. Tidy data. 7. Iteration. 8.
Data science ethics. II. Part II: Statistics and Modeling. 9. Statistical
foundations. 10. Predictive modeling. 11. Supervised learning. 12.
Unsupervised learning. 13. Simulation. III Part III: Topics in Data
Science. 14. Dynamic and customized data graphics. 15. Database querying
using SQL. 16. Database administration. 17. Working with spatial data.
18.Geospatial computations. 19. Text as data. 20. Network science. IV Part
IV: Appendices.
Data visualization. 3. A grammar for graphics. 4. Data wrangling on one
table. 5. Data wrangling on multiple tables. 6. Tidy data. 7. Iteration. 8.
Data science ethics. II. Part II: Statistics and Modeling. 9. Statistical
foundations. 10. Predictive modeling. 11. Supervised learning. 12.
Unsupervised learning. 13. Simulation. III Part III: Topics in Data
Science. 14. Dynamic and customized data graphics. 15. Database querying
using SQL. 16. Database administration. 17. Working with spatial data.
18.Geospatial computations. 19. Text as data. 20. Network science. IV Part
IV: Appendices.