In a way the MOTECC-89 project started in the early sixties at the IBM Research Laboratory in San Jose, California. The six years of post-doctoral research, first with Giulio Natta on conductive polymers, with Michael Kasha on spin-orbit effects, with Kenneth S. Pitzer on high temperature molecules and thermo dynamics and with R. S. Mulliken in the quantum chemistry of small molecules had demonstrated pragmatically the importance of a broad-based research and also let me taste some of the excitement to be derived from interdisciplinarity. Thus when I started to gather a department in the newly…mehr
In a way the MOTECC-89 project started in the early sixties at the IBM Research Laboratory in San Jose, California. The six years of post-doctoral research, first with Giulio Natta on conductive polymers, with Michael Kasha on spin-orbit effects, with Kenneth S. Pitzer on high temperature molecules and thermo dynamics and with R. S. Mulliken in the quantum chemistry of small molecules had demonstrated pragmatically the importance of a broad-based research and also let me taste some of the excitement to be derived from interdisciplinarity. Thus when I started to gather a department in the newly opened IBM Research Laboratory in San Jose, California, I purposely named it "Large Scale Scientific Computation Department," avoiding reference to chemistry, physics, statistical mechanics or fluid dynamics, which were our main tasks. In the sixties interdisciplinarity was more and more recognized as a most important if not nec essary avenue to cope with the technical needs of our society.However, at that time interdisciplinarity was synonymous with "team work," and true interdisciplinarity was a formidably difficult objective. Although I headed an excellent group of scientists with different backgrounds and there was much progress and creativity, still each one of us was more or less conducting his own research in his own field with occasional cross-field partnerships and with some of the computational techniques as our common base. Later, in 1974, I made a second attempt, this time starting a new department at the Donegani Institute, Montedison, in Novara, Italy.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Introduction to MOTECC-89.- Productivity, Global Simulations and Evolution.- An Overview of MOTECC-89.- An Example of Global Simulation.- 1CAP 3090: Parallel Processing.- Conclusions.- 2. A Few Reminders of Basic Mechanics.- to Classical Mechanics.- From Newton to Liouville.- The Evolution to Statistical Mechanics.- Langevin Dynamics.- Fluid Mechanics, The Navier Stokes Equations.- to Quantum Mechanics.- Physical Examples of the Equations of Mechanics.- 3. Independent Electron Models: Hartree-Fock for Many-Electron Atoms.- The Analytic Hartree-Fock Method.- Open Shell Methods and Roothaan Vector Coupling Coefficients.- Basis Sets for Atomic Computations.- Geometrical Basis Sets.- Matrix Elements, Spherical Symmetry and Integrals.- The Correlation and Pair Correlation Energies.- Configuration and Momentum Expectation Values.- The Finite Element Method (FEM).- 4. Kinetically Balanced Geometric Gaussian Basis Set Calculations for Relativistic Many Electron Atoms.- Preliminary.- Matrix Elements of the Hamiltonian.- Choice of Basis Sets.- Relativistic Hartree-Fock-Roothaan Equation.- Angular Coefficients.- Evaluation of Matrix Elements.- Finite Nucleus Approximation.- Open-Shell Calculations.- Vector Coupling Coefficients 191Numerical Results.- Conclusions.- 5. Hylleraas Configuration Interaction Method Using Gaussian Functions.- Theory.- Applications and Specific Examples.- Two-Electron Integral Formulas.- The R(ij) Operator.- Three-Electron Integral Formulas.- Four-Electron Integral Formulas.- 6. KGNMOL: A Program for Molecular Interactions.- Gaussian Type Functions.- The Hydrogen Molecule.- One-Electron Integral Formulae.- Two-Electron Integral Formulae.- Special Options for Adding Fragments or Molecules.- Basis Set Superposition Error.- Ab Initio Computation of LargeMolecules.- MP2 Option and Parallelization.- Normalization of Gaussian Type Functions.- The Gaussian Product Theorem.- Integrals Related to the Gamma Function.- Incomplete Gamma Function.- The Complete Gamma Function.- 7. HONDO: A General Atomic and Molecular Electronic Structure System.- Wavefunctions and Energies.- Electronic Properties.- Molecular Structure Options.- Miscellaneous Features.- Illustrative Examples.- 8. Monte Carlo and Molecular Dynamics Simulations.- Interaction Potentials.- The Monte Carlo Method.- The Molecular Dynamics Method.- Periodic Boundary Conditions and Long Range Forces.- Applications and Examples.- MD Simulation of Liquid Water with the Expanded Polarization Model.- Free Energy Calculations.- 9. Brownian Dynamics Simulation.- Classical Brownian Theory for Translational Diffusion.- Algorithm.- Implementation for Flexible Protein Dynamics.- Rotational Brownian Motion of Non-Spherical Particles.- Description of Results.- 10. Micro-Hydrodynamics.- Molecular Dynamics Simulations.- Cellular Automata.- Applications and Discussion of Results.- 11. The Equations of Fluid Flow and Their Solution by Finite Element Methods.- The Equations of Fluid Flow.- The Finite Element Method.- Solution Techniques.- Computational Solution of the Navier Stokes Equations.- Parallel Implementation of the Solution Scheme.- Turbulent Flow.- Direct Numerical Simulation of Isotropic Turbulent Flows.- 12. Visualization Techniques for Science and Engineering.- The graPHIGS Application Programming Interface.- Requirements for Molecular Graphics Applications.- The User Interface.- Display of Molecular Models.- Display of Electron Densities and Molecular Orbitals.- Creation and Manipulation of Molecules.- Molecule Building from Templates.- Inquiry of Geometrical Parameters.-Display of Molecular Vibrations.- Animations.- Files Manipulation.- Towards More Realistic Images.- Animations of Realistic Images.- Animation Hardware.- A Video Cassette Recorder Animation System.- An Animation Control Program for the PC-AT.- Windows Oriented Interfaces for Input Specification.- 13. Parallel Algorithms.- General Principles.- Basic Matrix Operators.- Linear System Solvers.- Real Symmetric Eigenvalue Solvers.- Orthogonal Basis Set Generation.- Conclusions.- 14. SIRIUS: A General Purpose Direct Second Order MCSCF Program.- 15. Electron Correlation Energy from Hartree-Fock-Type Densities.- The Colle-Salvetti Functional.- The Lie-Clementi Functional.- Expressions for GL-SPP, VWN-SPP and PZ Functional.- Discussion.
1. Introduction to MOTECC-89.- Productivity, Global Simulations and Evolution.- An Overview of MOTECC-89.- An Example of Global Simulation.- 1CAP 3090: Parallel Processing.- Conclusions.- 2. A Few Reminders of Basic Mechanics.- to Classical Mechanics.- From Newton to Liouville.- The Evolution to Statistical Mechanics.- Langevin Dynamics.- Fluid Mechanics, The Navier Stokes Equations.- to Quantum Mechanics.- Physical Examples of the Equations of Mechanics.- 3. Independent Electron Models: Hartree-Fock for Many-Electron Atoms.- The Analytic Hartree-Fock Method.- Open Shell Methods and Roothaan Vector Coupling Coefficients.- Basis Sets for Atomic Computations.- Geometrical Basis Sets.- Matrix Elements, Spherical Symmetry and Integrals.- The Correlation and Pair Correlation Energies.- Configuration and Momentum Expectation Values.- The Finite Element Method (FEM).- 4. Kinetically Balanced Geometric Gaussian Basis Set Calculations for Relativistic Many Electron Atoms.- Preliminary.- Matrix Elements of the Hamiltonian.- Choice of Basis Sets.- Relativistic Hartree-Fock-Roothaan Equation.- Angular Coefficients.- Evaluation of Matrix Elements.- Finite Nucleus Approximation.- Open-Shell Calculations.- Vector Coupling Coefficients 191Numerical Results.- Conclusions.- 5. Hylleraas Configuration Interaction Method Using Gaussian Functions.- Theory.- Applications and Specific Examples.- Two-Electron Integral Formulas.- The R(ij) Operator.- Three-Electron Integral Formulas.- Four-Electron Integral Formulas.- 6. KGNMOL: A Program for Molecular Interactions.- Gaussian Type Functions.- The Hydrogen Molecule.- One-Electron Integral Formulae.- Two-Electron Integral Formulae.- Special Options for Adding Fragments or Molecules.- Basis Set Superposition Error.- Ab Initio Computation of LargeMolecules.- MP2 Option and Parallelization.- Normalization of Gaussian Type Functions.- The Gaussian Product Theorem.- Integrals Related to the Gamma Function.- Incomplete Gamma Function.- The Complete Gamma Function.- 7. HONDO: A General Atomic and Molecular Electronic Structure System.- Wavefunctions and Energies.- Electronic Properties.- Molecular Structure Options.- Miscellaneous Features.- Illustrative Examples.- 8. Monte Carlo and Molecular Dynamics Simulations.- Interaction Potentials.- The Monte Carlo Method.- The Molecular Dynamics Method.- Periodic Boundary Conditions and Long Range Forces.- Applications and Examples.- MD Simulation of Liquid Water with the Expanded Polarization Model.- Free Energy Calculations.- 9. Brownian Dynamics Simulation.- Classical Brownian Theory for Translational Diffusion.- Algorithm.- Implementation for Flexible Protein Dynamics.- Rotational Brownian Motion of Non-Spherical Particles.- Description of Results.- 10. Micro-Hydrodynamics.- Molecular Dynamics Simulations.- Cellular Automata.- Applications and Discussion of Results.- 11. The Equations of Fluid Flow and Their Solution by Finite Element Methods.- The Equations of Fluid Flow.- The Finite Element Method.- Solution Techniques.- Computational Solution of the Navier Stokes Equations.- Parallel Implementation of the Solution Scheme.- Turbulent Flow.- Direct Numerical Simulation of Isotropic Turbulent Flows.- 12. Visualization Techniques for Science and Engineering.- The graPHIGS Application Programming Interface.- Requirements for Molecular Graphics Applications.- The User Interface.- Display of Molecular Models.- Display of Electron Densities and Molecular Orbitals.- Creation and Manipulation of Molecules.- Molecule Building from Templates.- Inquiry of Geometrical Parameters.-Display of Molecular Vibrations.- Animations.- Files Manipulation.- Towards More Realistic Images.- Animations of Realistic Images.- Animation Hardware.- A Video Cassette Recorder Animation System.- An Animation Control Program for the PC-AT.- Windows Oriented Interfaces for Input Specification.- 13. Parallel Algorithms.- General Principles.- Basic Matrix Operators.- Linear System Solvers.- Real Symmetric Eigenvalue Solvers.- Orthogonal Basis Set Generation.- Conclusions.- 14. SIRIUS: A General Purpose Direct Second Order MCSCF Program.- 15. Electron Correlation Energy from Hartree-Fock-Type Densities.- The Colle-Salvetti Functional.- The Lie-Clementi Functional.- Expressions for GL-SPP, VWN-SPP and PZ Functional.- Discussion.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826