D. E. Rutherford
Modular Invariants
D. E. Rutherford
Modular Invariants
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Originally published in 1932, this book describes the theory of modular invariants as embodied in the work of Dickson, Glenn and Hazlett.
Andere Kunden interessierten sich auch für
- G. B. MathewsAlgebraic Equations24,99 €
- Isa IbrahimArm Inductor Selection Principle In Modular Multilevel Converter29,99 €
- Zakiyyu Muhammad SarkinbakaTechno-Economic Analysis of a Modular Cryogenic Energy Storage System47,95 €
- Ted RuddockArch Bridges and Their Builders 1735 183549,99 €
- David SteelThe Elements and Practice of Rigging, Seamanship, and Naval Tactics32,99 €
- Worlds of Natural History58,99 €
- Thomas PennantHistory of Quadrupeds51,99 €
-
-
-
Originally published in 1932, this book describes the theory of modular invariants as embodied in the work of Dickson, Glenn and Hazlett.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 94
- Erscheinungstermin: 17. Oktober 2014
- Englisch
- Abmessung: 216mm x 140mm x 5mm
- Gewicht: 131g
- ISBN-13: 9781107493766
- ISBN-10: 1107493765
- Artikelnr.: 41853698
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 94
- Erscheinungstermin: 17. Oktober 2014
- Englisch
- Abmessung: 216mm x 140mm x 5mm
- Gewicht: 131g
- ISBN-13: 9781107493766
- ISBN-10: 1107493765
- Artikelnr.: 41853698
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Preface
Part I: 1. A new notation
2. Galois fields and Fermat's theorem
3. Transformations in the Galois fields
4. Types of concomitants
5. Systems and finiteness
6. Symbolical notation
7. Generators of linear transformations
8. Weight and isobarbism
9. Congruent concomitants
10. Relation between congruent and algebraic covariants
11. Formal covariants
13. Dickson's theorem
14. Formal invariants of linear form
15. The use of symbolical operators
16. Annihilators of formal invariants
17. Dickson's method for formal covariants
18. Symbolical representation of pseudo-isobaric formal covariants
19. Classes
20. Characteristic invariants
21. Syzygies
22. Residual covariants
23. Miss Sanderson's theorem
24. A method of finding characteristic invariants
25. Smallest full systems
26. Residual invariants of linear forms
27. Residual invariants of quadratic forms
28. Cubic and higher forms
29. Relative unimportance of residual covariants
30. Non-formal residual covariants
Part II: 31. Rings and fields
32. Expansions
33. Isomorphism
34. Finite expansions
35. Transcendental and algebraic expansions
36. Rational basis theorem of E. Noether
37. The fields Ky+/-f
38. Expansions of the first and second sorts
39. The theorem on divisor chains
40. R-modules
41. A theorem of Artin and of van der Waerden
42. The finiteness criterion of E. Noether
43. Application of E. Noether's theorem to modular covariants
Appendix I
Appendix II
Appendix III
Index.
Part I: 1. A new notation
2. Galois fields and Fermat's theorem
3. Transformations in the Galois fields
4. Types of concomitants
5. Systems and finiteness
6. Symbolical notation
7. Generators of linear transformations
8. Weight and isobarbism
9. Congruent concomitants
10. Relation between congruent and algebraic covariants
11. Formal covariants
13. Dickson's theorem
14. Formal invariants of linear form
15. The use of symbolical operators
16. Annihilators of formal invariants
17. Dickson's method for formal covariants
18. Symbolical representation of pseudo-isobaric formal covariants
19. Classes
20. Characteristic invariants
21. Syzygies
22. Residual covariants
23. Miss Sanderson's theorem
24. A method of finding characteristic invariants
25. Smallest full systems
26. Residual invariants of linear forms
27. Residual invariants of quadratic forms
28. Cubic and higher forms
29. Relative unimportance of residual covariants
30. Non-formal residual covariants
Part II: 31. Rings and fields
32. Expansions
33. Isomorphism
34. Finite expansions
35. Transcendental and algebraic expansions
36. Rational basis theorem of E. Noether
37. The fields Ky+/-f
38. Expansions of the first and second sorts
39. The theorem on divisor chains
40. R-modules
41. A theorem of Artin and of van der Waerden
42. The finiteness criterion of E. Noether
43. Application of E. Noether's theorem to modular covariants
Appendix I
Appendix II
Appendix III
Index.
Preface
Part I: 1. A new notation
2. Galois fields and Fermat's theorem
3. Transformations in the Galois fields
4. Types of concomitants
5. Systems and finiteness
6. Symbolical notation
7. Generators of linear transformations
8. Weight and isobarbism
9. Congruent concomitants
10. Relation between congruent and algebraic covariants
11. Formal covariants
13. Dickson's theorem
14. Formal invariants of linear form
15. The use of symbolical operators
16. Annihilators of formal invariants
17. Dickson's method for formal covariants
18. Symbolical representation of pseudo-isobaric formal covariants
19. Classes
20. Characteristic invariants
21. Syzygies
22. Residual covariants
23. Miss Sanderson's theorem
24. A method of finding characteristic invariants
25. Smallest full systems
26. Residual invariants of linear forms
27. Residual invariants of quadratic forms
28. Cubic and higher forms
29. Relative unimportance of residual covariants
30. Non-formal residual covariants
Part II: 31. Rings and fields
32. Expansions
33. Isomorphism
34. Finite expansions
35. Transcendental and algebraic expansions
36. Rational basis theorem of E. Noether
37. The fields Ky+/-f
38. Expansions of the first and second sorts
39. The theorem on divisor chains
40. R-modules
41. A theorem of Artin and of van der Waerden
42. The finiteness criterion of E. Noether
43. Application of E. Noether's theorem to modular covariants
Appendix I
Appendix II
Appendix III
Index.
Part I: 1. A new notation
2. Galois fields and Fermat's theorem
3. Transformations in the Galois fields
4. Types of concomitants
5. Systems and finiteness
6. Symbolical notation
7. Generators of linear transformations
8. Weight and isobarbism
9. Congruent concomitants
10. Relation between congruent and algebraic covariants
11. Formal covariants
13. Dickson's theorem
14. Formal invariants of linear form
15. The use of symbolical operators
16. Annihilators of formal invariants
17. Dickson's method for formal covariants
18. Symbolical representation of pseudo-isobaric formal covariants
19. Classes
20. Characteristic invariants
21. Syzygies
22. Residual covariants
23. Miss Sanderson's theorem
24. A method of finding characteristic invariants
25. Smallest full systems
26. Residual invariants of linear forms
27. Residual invariants of quadratic forms
28. Cubic and higher forms
29. Relative unimportance of residual covariants
30. Non-formal residual covariants
Part II: 31. Rings and fields
32. Expansions
33. Isomorphism
34. Finite expansions
35. Transcendental and algebraic expansions
36. Rational basis theorem of E. Noether
37. The fields Ky+/-f
38. Expansions of the first and second sorts
39. The theorem on divisor chains
40. R-modules
41. A theorem of Artin and of van der Waerden
42. The finiteness criterion of E. Noether
43. Application of E. Noether's theorem to modular covariants
Appendix I
Appendix II
Appendix III
Index.