Modulation and Coding Techniques in Wireless Communications
Herausgeber: Krouk, Evgenii; Semenov, Sergei
Modulation and Coding Techniques in Wireless Communications
Herausgeber: Krouk, Evgenii; Semenov, Sergei
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage…mehr
Andere Kunden interessierten sich auch für
- Gianluigi FerrariDetection Algorithms for Wireless Communications191,99 €
- Georgios B. GiannakisSpace-Time Coding for Broadband Wireless Communications154,99 €
- Error Control Coding for B3G/4G Wireless Systems139,99 €
- Short-Range Wireless Communications160,99 €
- Yong Soo ChoMimo-Ofdm Wireless Communications with MATLAB191,99 €
- Xavier N. FernandoRadio Over Fiber for Wireless Communications140,99 €
- Multi-Mode / Multi-Band RF Transceivers for Wireless Communications188,99 €
-
-
-
The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. * An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication * Bridges the gap between the modulation coding theory and the wireless communications standards material * Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part * Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons / Wiley
- Seitenzahl: 688
- Erscheinungstermin: 12. April 2011
- Englisch
- Abmessung: 249mm x 175mm x 41mm
- Gewicht: 1270g
- ISBN-13: 9780470745052
- ISBN-10: 0470745053
- Artikelnr.: 32568299
- Verlag: John Wiley & Sons / Wiley
- Seitenzahl: 688
- Erscheinungstermin: 12. April 2011
- Englisch
- Abmessung: 249mm x 175mm x 41mm
- Gewicht: 1270g
- ISBN-13: 9780470745052
- ISBN-10: 0470745053
- Artikelnr.: 32568299
Professor E. Krouk has worked in the field of communication theory and techniques for more than 30 years. His areas of interests are coding theory, the mathematical theory of communications and cryptography. He is now the Dean of the Information Systems and Data Protection Faculty of the Saint-Petersburg State University of Aerospace Instrumentation. He is author of 3 books, more than 100 scientific articles and 30 international and Russian patents. Sergei Semenov received his Ph.D. degree from St.-Petersburg State University for Airspace Instrumentation (SUAI), Russia in 1993. Dr. Semenov joined Nokia Corporation in 1999 and is currently a Specialist in Modem Algorithm Design/Wireless Modem. His research interests include coding and communication theory and their application to communication systems.
About the Editors xi
List of Contributors xiii
Acknowledgements xv
Introduction xvii
1 Channel Models and Reliable Communication 1
Evgenii Krouk, Andrei Ovchinnikov, and Jussi Poikonen
1.1 Principles of Reliable Communication 1
1.2 AWGN 2
1.2.1 Baseband Representation of AWGN 2
1.2.2 From Sample SNR to Eb /N0 5
1.3 Fading Processes in Wireless Communication Channels 6
1.3.1 Large-Scale Fading (Path Loss) 7
1.3.2 Medium-Scale Fading (Shadowing) 10
1.3.3 Small-Scale Fading (Multipath Propagation) 11
1.4 Modelling Frequency-Nonselective Fading 14
1.4.1 Rayleigh and Rice Distributions 14
1.4.2 Maximum Doppler Frequency Shift 15
1.4.3 Wide-Sense Stationary Stochastic Processes 15
1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading 15
1.4.5 SNR in Rayleigh Fading Channels 17
1.5 WSSUS Models for Frequency-Selective Fading 18
1.5.1 Basic Principles 18
1.5.2 Definitions 19
References 19
2 Modulation 21
Sergei Semenov
2.1 Basic Principles of Bandpass Modulation 21
2.1.1 The Complex Representation of a Bandpass Signal 22
2.1.2 Representation of Signal with Basis Functions 27
2.1.3 Pulse Shaping 31
2.1.4 Matched Filter 35
2.2 PSK 38
2.2.1 BPSK 38
2.2.2 QPSK 43
2.2.3 M-PSK 47
2.2.4 DPSK 48
2.2.5 OQPSK 50
2.2.6 ¿/4-QPSK 51
2.3 MSK 54
2.3.1 GMSK 54
2.4 QAM 60
2.5 OFDM 66
References 81
3 Block Codes 83
Grigorii Kabatiansky, Evgenii Krouk, Andrei Ovchinnikov, and Sergei Semenov
3.1 Main Definitions 83
3.2 Algebraic Structures 86
3.3 Linear Block Codes 94
3.4 Cyclic Codes 98
3.5 Bounds on Minimum Distance 114
3.6 Minimum Distance Decoding 119
3.7 Information Set Decoding 120
3.8 Hamming Codes 128
3.9 Reed-Solomon Codes 131
3.10 BCH Codes 133
3.11 Decoding of BCH Codes 135
3.12 Sudan Algorithm and Its Extensions 139
3.13 LDPC Codes 146
3.13.1 LDPC Constructions 148
3.13.2 Decoding of LDPC Codes 154
References 157
4 Convolutional Codes and Turbo-Codes 161
Sergei Semenov and Andrey Trofimov
4.1 Convolutional Codes Representation and Encoding 161
4.2 Viterbi Decoding Algorithm 169
4.2.1 Hard Decision Viterbi Algorithm 170
4.2.2 Soft Decision Viterbi Algorithm 174
4.3 List Decoding 178
4.4 Upper Bound on Bit Error Probability for Viterbi Decoding 178
4.5 Sequential Decoding 183
4.5.1 Stack Algorithm 184
4.5.2 Fano Algorithm 187
4.6 Parallel-Concatenated Convolutional Codes and Soft Input Soft Output
Decoding 190
4.7 SISO Decoding Algorithms 195
4.7.1 MAP Algorithm and Its Variants 195
4.7.2 Soft-In/Soft-Out Viterbi Algorithm (SOVA) 201
References 205
4.a Modified Chernoff Bound and Some Applications 206
Andrey Trofimov
References 219
5 Equalization 221
Sergei Semenov
5.1 Equalization with Filtering 222
5.1.1 Zero-Forcing Equalization 226
5.1.2 MMSE Equalization 228
5.1.3 DFE 233
5.2 Equalization Based on Sequence Estimation 239
5.2.1 MLSE Equalization 239
5.2.2 Sphere Detection 242
5.3 RAKE Receiver 251
5.4 Turbo Equalization 254
5.5 Performance Comparison 259
References 261
6 ARQ 263
Evgenii Krouk
6.1 Basic ARQ Schemes 263
6.1.1 Basic Concepts 263
6.1.2 Stop-and-Wait ARQ 265
6.1.3 ARQ with N Steps Back (Go Back N, GBN) 267
6.1.4 ARQ with Selective Repeat (SR) 268
6.2 Hybrid ARQ 269
6.2.1 Type-I Hybrid ARQ (Chase Combining) 269
6.2.2 Type-II Hybrid ARQ (Full IR) 270
6.2.3 Type-III Hybrid ARQ (Partial IR) 273
References 275
7 Coded Modulation 277
Andrey Trofimov
7.1 Principle of Coded Modulation 277
7.1.1 Illustrative Example 280
7.2 Modulation Mapping by Signal Set Partitioning 282
7.3 Ungerboeck Codes 285
7.4 Performance Estimation of TCM System 287
7.4.1 Squared Distance Structure of PSK and QAM Constellations 287
7.4.2 Upper Bound on Error Event Probability and Bit Error Probability for
TCM 289
References 299
8 MIMO 301
Andrei Ovchinnikov and Sergei Semenov
8.1 MIMO Channel Model 301
8.1.1 Fading in Narrowband Channels 301
8.1.2 Fading Countermeasures: Diversity 303
8.1.3 MIMO Channel model 306
8.2 Space-Time Coding 310
8.2.1 Maximum Ratio Combining 310
8.2.2 Definition of Space-Time Codes 311
8.2.3 Space-Time Codes with Two Transmit Antennas 312
8.2.4 Construction Criteria for Space-Time Codes 314
8.3 Orthogonal Designs 317
8.3.1 Real Orthogonal Designs 317
8.3.2 Complex Orthogonal Designs 319
8.3.3 Decoding of Space-Time Codes 323
8.3.4 Error Probability for Orthogonal Space-Time Codes 326
8.4 Space-Time Trellis Codes 327
8.4.1 Space-Time Trellis Codes 327
8.4.2 Space-Time Turbo Trellis Codes 330
8.5 Differential Space-Time Codes 334
8.6 Spatial Multiplexing 337
8.6.1 General Concepts 337
8.6.2 V-BLAST 339
8.6.3 D-BLAST 341
8.6.4 Turbo-BLAST 342
8.7 Beamforming 344
References 348
9 Multiple Access Methods 351
Dmitry Osipov, Jarkko Paavola, and Jussi Poikonen
9.1 Frequency Division Multiple Access 353
9.1.1 Spectral Reuse 355
9.1.2 OFDMA 356
9.1.3 SC-FDMA 358
9.1.4 WDMA 359
9.2 Time Division Multiple Access 359
9.3 Code Division Multiple Access 360
9.3.1 Direct-Sequence CDMA 360
9.3.2 Frequency-Hopping CDMA 366
9.4 Advanced MA Methods 367
9.4.1 Multicarrier CDMA 367
9.4.2 Random OFDMA 368
9.4.3 DHA-FH-CDMA 369
9.5 Random Access Multiple Access Methods 371
9.6 Conclusions 376
References 376
10 Standardization in IEEE 802.11, 802.16 381
Tuomas Laine, Zexian Li, Andrei Malkov, and Prabodh Varshney
10.1 IEEE Overview 381
10.2 Standard Development Process 384
10.3 IEEE 802.11 Working Group 385
10.4 IEEE 802.16 Working Group 386
10.5 IEEE 802.11 388
10.5.1 Overview and Scope 388
10.5.2 Frequency Plan 388
10.5.3 Reference Model 389
10.5.4 Architecture 390
10.5.5 802.11a 391
10.5.6 802.11b 392
10.5.7 802.11g 394
10.5.8 802.11n 395
10.5.9 Future Developments 397
10.6 IEEE 802.16x 398
10.6.1 Key PHY Features of the IEEE 802.16e 398
10.6.2 IEEE 802.16m 400
References 428
11 Standardization in 3GPP 429
Asbjørn Grøvlen, Kari Hooli, Matti Jokimies, Kari Pajukoski, Sergei
Semenov, and Esa Tiirola
11.1 Standardization Process and Organization 429
11.1.1 General 429
11.1.2 Organization of 3GPP 430
11.1.3 Organization of TSG RAN 430
11.1.4 Standardization Process 431
11.1.5 3GPP Releases 432
11.1.6 Frequency Bands and 3GPP Releases 433
11.1.7 RAN Specifications 433
11.2 3G WCDMA 433
11.2.1 WCDMA Concept. Logical, Transport and Physical Channels 434
11.2.2 Logical and Transport Channels 435
11.2.3 Physical Channels 440
11.2.4 Coding, Spreading and Modulation 459
11.2.5 Cell Search 476
11.2.6 Power Control Procedures 476
11.2.7 Handover Procedures 479
11.2.8 Transmit Diversity 486
11.3 3.5G HSDPA/HSUPA 490
11.3.1 HSDPA 490
11.3.2 HSUPA 536
11.3.3 CPC 574
11.4 4G LTE 577
11.4.1 LTE Downlink 577
11.4.2 LTE Uplink 592
References 602
12 CDMA2000 and Its Evolution 605
Andrei Ovchinnikov
12.1 Development of 3G CDMA2000 Standard 605
12.1.1 IS-95 Family of Standards (cdmaOne) 605
12.1.2 IS-2000 Family of Standards 606
12.2 Reverse Channel of Physical Layer in CDMA2000 Standard 611
12.2.1 Reverse Channel Structure 611
12.2.2 Forward Error Correction (FEC) 612
12.2.3 Codeword Symbols Repetition 615
12.2.4 Puncturing 618
12.2.5 Block Interleaving 618
12.2.6 Orthogonal Modulation and Orthogonal Spreading 619
12.2.7 Direct Sequence Spreading and Quadrature Spreading 619
12.2.8 Frame Quality Indicator 622
12.3 Forward Channel of Physical Layer in CDMA2000 Standard 623
12.3.1 Forward Channel Structure 623
12.3.2 Forward Error Correction 625
12.3.3 Codeword Symbols Repetition 629
12.3.4 Puncturing 630
12.3.5 Block Interleaving 630
12.3.6 Sequence Repetition 630
12.3.7 Data Scrambling 630
12.3.8 Orthogonal and Quasi-Orthogonal Spreading 631
12.3.9 Quadrature Spreading 631
12.3.10 Frame Quality Indicator 631
12.4 Architecture Model of CDMA2000 1xEV-DO Standard 631
12.4.1 Structure of Physical Layer Packet 632
12.4.2 FCS Computation 632
12.5 Access Terminal of the CDMA2000 1xEV-DO Standard 633
12.5.1 Power Control 633
12.5.2 Reverse Channel Structure 633
12.5.3 Modulation Parameters and Transmission Rates 634
12.5.4 Access Channel 634
12.5.5 Reverse Traffic Channel 636
12.5.6 Encoding 640
12.5.7 Channel Interleaving and Repetition 641
12.5.8 Quadrature Spreading 641
12.6 Access Network of the CDMA2000 1xEV-DO Standard 643
12.6.1 Forward Channel Structure 643
12.6.2 Modulation Parameters and Transmission Rates 645
12.6.3 Pilot Channel 645
12.6.4 Forward MAC Channel 645
12.6.5 Control Channel 647
12.6.6 Forward Traffic Channel 647
12.6.7 Time-Division Multiplexing 651
12.6.8 Quadrature Spreading 651
References 654
Index 655
List of Contributors xiii
Acknowledgements xv
Introduction xvii
1 Channel Models and Reliable Communication 1
Evgenii Krouk, Andrei Ovchinnikov, and Jussi Poikonen
1.1 Principles of Reliable Communication 1
1.2 AWGN 2
1.2.1 Baseband Representation of AWGN 2
1.2.2 From Sample SNR to Eb /N0 5
1.3 Fading Processes in Wireless Communication Channels 6
1.3.1 Large-Scale Fading (Path Loss) 7
1.3.2 Medium-Scale Fading (Shadowing) 10
1.3.3 Small-Scale Fading (Multipath Propagation) 11
1.4 Modelling Frequency-Nonselective Fading 14
1.4.1 Rayleigh and Rice Distributions 14
1.4.2 Maximum Doppler Frequency Shift 15
1.4.3 Wide-Sense Stationary Stochastic Processes 15
1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading 15
1.4.5 SNR in Rayleigh Fading Channels 17
1.5 WSSUS Models for Frequency-Selective Fading 18
1.5.1 Basic Principles 18
1.5.2 Definitions 19
References 19
2 Modulation 21
Sergei Semenov
2.1 Basic Principles of Bandpass Modulation 21
2.1.1 The Complex Representation of a Bandpass Signal 22
2.1.2 Representation of Signal with Basis Functions 27
2.1.3 Pulse Shaping 31
2.1.4 Matched Filter 35
2.2 PSK 38
2.2.1 BPSK 38
2.2.2 QPSK 43
2.2.3 M-PSK 47
2.2.4 DPSK 48
2.2.5 OQPSK 50
2.2.6 ¿/4-QPSK 51
2.3 MSK 54
2.3.1 GMSK 54
2.4 QAM 60
2.5 OFDM 66
References 81
3 Block Codes 83
Grigorii Kabatiansky, Evgenii Krouk, Andrei Ovchinnikov, and Sergei Semenov
3.1 Main Definitions 83
3.2 Algebraic Structures 86
3.3 Linear Block Codes 94
3.4 Cyclic Codes 98
3.5 Bounds on Minimum Distance 114
3.6 Minimum Distance Decoding 119
3.7 Information Set Decoding 120
3.8 Hamming Codes 128
3.9 Reed-Solomon Codes 131
3.10 BCH Codes 133
3.11 Decoding of BCH Codes 135
3.12 Sudan Algorithm and Its Extensions 139
3.13 LDPC Codes 146
3.13.1 LDPC Constructions 148
3.13.2 Decoding of LDPC Codes 154
References 157
4 Convolutional Codes and Turbo-Codes 161
Sergei Semenov and Andrey Trofimov
4.1 Convolutional Codes Representation and Encoding 161
4.2 Viterbi Decoding Algorithm 169
4.2.1 Hard Decision Viterbi Algorithm 170
4.2.2 Soft Decision Viterbi Algorithm 174
4.3 List Decoding 178
4.4 Upper Bound on Bit Error Probability for Viterbi Decoding 178
4.5 Sequential Decoding 183
4.5.1 Stack Algorithm 184
4.5.2 Fano Algorithm 187
4.6 Parallel-Concatenated Convolutional Codes and Soft Input Soft Output
Decoding 190
4.7 SISO Decoding Algorithms 195
4.7.1 MAP Algorithm and Its Variants 195
4.7.2 Soft-In/Soft-Out Viterbi Algorithm (SOVA) 201
References 205
4.a Modified Chernoff Bound and Some Applications 206
Andrey Trofimov
References 219
5 Equalization 221
Sergei Semenov
5.1 Equalization with Filtering 222
5.1.1 Zero-Forcing Equalization 226
5.1.2 MMSE Equalization 228
5.1.3 DFE 233
5.2 Equalization Based on Sequence Estimation 239
5.2.1 MLSE Equalization 239
5.2.2 Sphere Detection 242
5.3 RAKE Receiver 251
5.4 Turbo Equalization 254
5.5 Performance Comparison 259
References 261
6 ARQ 263
Evgenii Krouk
6.1 Basic ARQ Schemes 263
6.1.1 Basic Concepts 263
6.1.2 Stop-and-Wait ARQ 265
6.1.3 ARQ with N Steps Back (Go Back N, GBN) 267
6.1.4 ARQ with Selective Repeat (SR) 268
6.2 Hybrid ARQ 269
6.2.1 Type-I Hybrid ARQ (Chase Combining) 269
6.2.2 Type-II Hybrid ARQ (Full IR) 270
6.2.3 Type-III Hybrid ARQ (Partial IR) 273
References 275
7 Coded Modulation 277
Andrey Trofimov
7.1 Principle of Coded Modulation 277
7.1.1 Illustrative Example 280
7.2 Modulation Mapping by Signal Set Partitioning 282
7.3 Ungerboeck Codes 285
7.4 Performance Estimation of TCM System 287
7.4.1 Squared Distance Structure of PSK and QAM Constellations 287
7.4.2 Upper Bound on Error Event Probability and Bit Error Probability for
TCM 289
References 299
8 MIMO 301
Andrei Ovchinnikov and Sergei Semenov
8.1 MIMO Channel Model 301
8.1.1 Fading in Narrowband Channels 301
8.1.2 Fading Countermeasures: Diversity 303
8.1.3 MIMO Channel model 306
8.2 Space-Time Coding 310
8.2.1 Maximum Ratio Combining 310
8.2.2 Definition of Space-Time Codes 311
8.2.3 Space-Time Codes with Two Transmit Antennas 312
8.2.4 Construction Criteria for Space-Time Codes 314
8.3 Orthogonal Designs 317
8.3.1 Real Orthogonal Designs 317
8.3.2 Complex Orthogonal Designs 319
8.3.3 Decoding of Space-Time Codes 323
8.3.4 Error Probability for Orthogonal Space-Time Codes 326
8.4 Space-Time Trellis Codes 327
8.4.1 Space-Time Trellis Codes 327
8.4.2 Space-Time Turbo Trellis Codes 330
8.5 Differential Space-Time Codes 334
8.6 Spatial Multiplexing 337
8.6.1 General Concepts 337
8.6.2 V-BLAST 339
8.6.3 D-BLAST 341
8.6.4 Turbo-BLAST 342
8.7 Beamforming 344
References 348
9 Multiple Access Methods 351
Dmitry Osipov, Jarkko Paavola, and Jussi Poikonen
9.1 Frequency Division Multiple Access 353
9.1.1 Spectral Reuse 355
9.1.2 OFDMA 356
9.1.3 SC-FDMA 358
9.1.4 WDMA 359
9.2 Time Division Multiple Access 359
9.3 Code Division Multiple Access 360
9.3.1 Direct-Sequence CDMA 360
9.3.2 Frequency-Hopping CDMA 366
9.4 Advanced MA Methods 367
9.4.1 Multicarrier CDMA 367
9.4.2 Random OFDMA 368
9.4.3 DHA-FH-CDMA 369
9.5 Random Access Multiple Access Methods 371
9.6 Conclusions 376
References 376
10 Standardization in IEEE 802.11, 802.16 381
Tuomas Laine, Zexian Li, Andrei Malkov, and Prabodh Varshney
10.1 IEEE Overview 381
10.2 Standard Development Process 384
10.3 IEEE 802.11 Working Group 385
10.4 IEEE 802.16 Working Group 386
10.5 IEEE 802.11 388
10.5.1 Overview and Scope 388
10.5.2 Frequency Plan 388
10.5.3 Reference Model 389
10.5.4 Architecture 390
10.5.5 802.11a 391
10.5.6 802.11b 392
10.5.7 802.11g 394
10.5.8 802.11n 395
10.5.9 Future Developments 397
10.6 IEEE 802.16x 398
10.6.1 Key PHY Features of the IEEE 802.16e 398
10.6.2 IEEE 802.16m 400
References 428
11 Standardization in 3GPP 429
Asbjørn Grøvlen, Kari Hooli, Matti Jokimies, Kari Pajukoski, Sergei
Semenov, and Esa Tiirola
11.1 Standardization Process and Organization 429
11.1.1 General 429
11.1.2 Organization of 3GPP 430
11.1.3 Organization of TSG RAN 430
11.1.4 Standardization Process 431
11.1.5 3GPP Releases 432
11.1.6 Frequency Bands and 3GPP Releases 433
11.1.7 RAN Specifications 433
11.2 3G WCDMA 433
11.2.1 WCDMA Concept. Logical, Transport and Physical Channels 434
11.2.2 Logical and Transport Channels 435
11.2.3 Physical Channels 440
11.2.4 Coding, Spreading and Modulation 459
11.2.5 Cell Search 476
11.2.6 Power Control Procedures 476
11.2.7 Handover Procedures 479
11.2.8 Transmit Diversity 486
11.3 3.5G HSDPA/HSUPA 490
11.3.1 HSDPA 490
11.3.2 HSUPA 536
11.3.3 CPC 574
11.4 4G LTE 577
11.4.1 LTE Downlink 577
11.4.2 LTE Uplink 592
References 602
12 CDMA2000 and Its Evolution 605
Andrei Ovchinnikov
12.1 Development of 3G CDMA2000 Standard 605
12.1.1 IS-95 Family of Standards (cdmaOne) 605
12.1.2 IS-2000 Family of Standards 606
12.2 Reverse Channel of Physical Layer in CDMA2000 Standard 611
12.2.1 Reverse Channel Structure 611
12.2.2 Forward Error Correction (FEC) 612
12.2.3 Codeword Symbols Repetition 615
12.2.4 Puncturing 618
12.2.5 Block Interleaving 618
12.2.6 Orthogonal Modulation and Orthogonal Spreading 619
12.2.7 Direct Sequence Spreading and Quadrature Spreading 619
12.2.8 Frame Quality Indicator 622
12.3 Forward Channel of Physical Layer in CDMA2000 Standard 623
12.3.1 Forward Channel Structure 623
12.3.2 Forward Error Correction 625
12.3.3 Codeword Symbols Repetition 629
12.3.4 Puncturing 630
12.3.5 Block Interleaving 630
12.3.6 Sequence Repetition 630
12.3.7 Data Scrambling 630
12.3.8 Orthogonal and Quasi-Orthogonal Spreading 631
12.3.9 Quadrature Spreading 631
12.3.10 Frame Quality Indicator 631
12.4 Architecture Model of CDMA2000 1xEV-DO Standard 631
12.4.1 Structure of Physical Layer Packet 632
12.4.2 FCS Computation 632
12.5 Access Terminal of the CDMA2000 1xEV-DO Standard 633
12.5.1 Power Control 633
12.5.2 Reverse Channel Structure 633
12.5.3 Modulation Parameters and Transmission Rates 634
12.5.4 Access Channel 634
12.5.5 Reverse Traffic Channel 636
12.5.6 Encoding 640
12.5.7 Channel Interleaving and Repetition 641
12.5.8 Quadrature Spreading 641
12.6 Access Network of the CDMA2000 1xEV-DO Standard 643
12.6.1 Forward Channel Structure 643
12.6.2 Modulation Parameters and Transmission Rates 645
12.6.3 Pilot Channel 645
12.6.4 Forward MAC Channel 645
12.6.5 Control Channel 647
12.6.6 Forward Traffic Channel 647
12.6.7 Time-Division Multiplexing 651
12.6.8 Quadrature Spreading 651
References 654
Index 655
About the Editors xi
List of Contributors xiii
Acknowledgements xv
Introduction xvii
1 Channel Models and Reliable Communication 1
Evgenii Krouk, Andrei Ovchinnikov, and Jussi Poikonen
1.1 Principles of Reliable Communication 1
1.2 AWGN 2
1.2.1 Baseband Representation of AWGN 2
1.2.2 From Sample SNR to Eb /N0 5
1.3 Fading Processes in Wireless Communication Channels 6
1.3.1 Large-Scale Fading (Path Loss) 7
1.3.2 Medium-Scale Fading (Shadowing) 10
1.3.3 Small-Scale Fading (Multipath Propagation) 11
1.4 Modelling Frequency-Nonselective Fading 14
1.4.1 Rayleigh and Rice Distributions 14
1.4.2 Maximum Doppler Frequency Shift 15
1.4.3 Wide-Sense Stationary Stochastic Processes 15
1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading 15
1.4.5 SNR in Rayleigh Fading Channels 17
1.5 WSSUS Models for Frequency-Selective Fading 18
1.5.1 Basic Principles 18
1.5.2 Definitions 19
References 19
2 Modulation 21
Sergei Semenov
2.1 Basic Principles of Bandpass Modulation 21
2.1.1 The Complex Representation of a Bandpass Signal 22
2.1.2 Representation of Signal with Basis Functions 27
2.1.3 Pulse Shaping 31
2.1.4 Matched Filter 35
2.2 PSK 38
2.2.1 BPSK 38
2.2.2 QPSK 43
2.2.3 M-PSK 47
2.2.4 DPSK 48
2.2.5 OQPSK 50
2.2.6 ¿/4-QPSK 51
2.3 MSK 54
2.3.1 GMSK 54
2.4 QAM 60
2.5 OFDM 66
References 81
3 Block Codes 83
Grigorii Kabatiansky, Evgenii Krouk, Andrei Ovchinnikov, and Sergei Semenov
3.1 Main Definitions 83
3.2 Algebraic Structures 86
3.3 Linear Block Codes 94
3.4 Cyclic Codes 98
3.5 Bounds on Minimum Distance 114
3.6 Minimum Distance Decoding 119
3.7 Information Set Decoding 120
3.8 Hamming Codes 128
3.9 Reed-Solomon Codes 131
3.10 BCH Codes 133
3.11 Decoding of BCH Codes 135
3.12 Sudan Algorithm and Its Extensions 139
3.13 LDPC Codes 146
3.13.1 LDPC Constructions 148
3.13.2 Decoding of LDPC Codes 154
References 157
4 Convolutional Codes and Turbo-Codes 161
Sergei Semenov and Andrey Trofimov
4.1 Convolutional Codes Representation and Encoding 161
4.2 Viterbi Decoding Algorithm 169
4.2.1 Hard Decision Viterbi Algorithm 170
4.2.2 Soft Decision Viterbi Algorithm 174
4.3 List Decoding 178
4.4 Upper Bound on Bit Error Probability for Viterbi Decoding 178
4.5 Sequential Decoding 183
4.5.1 Stack Algorithm 184
4.5.2 Fano Algorithm 187
4.6 Parallel-Concatenated Convolutional Codes and Soft Input Soft Output
Decoding 190
4.7 SISO Decoding Algorithms 195
4.7.1 MAP Algorithm and Its Variants 195
4.7.2 Soft-In/Soft-Out Viterbi Algorithm (SOVA) 201
References 205
4.a Modified Chernoff Bound and Some Applications 206
Andrey Trofimov
References 219
5 Equalization 221
Sergei Semenov
5.1 Equalization with Filtering 222
5.1.1 Zero-Forcing Equalization 226
5.1.2 MMSE Equalization 228
5.1.3 DFE 233
5.2 Equalization Based on Sequence Estimation 239
5.2.1 MLSE Equalization 239
5.2.2 Sphere Detection 242
5.3 RAKE Receiver 251
5.4 Turbo Equalization 254
5.5 Performance Comparison 259
References 261
6 ARQ 263
Evgenii Krouk
6.1 Basic ARQ Schemes 263
6.1.1 Basic Concepts 263
6.1.2 Stop-and-Wait ARQ 265
6.1.3 ARQ with N Steps Back (Go Back N, GBN) 267
6.1.4 ARQ with Selective Repeat (SR) 268
6.2 Hybrid ARQ 269
6.2.1 Type-I Hybrid ARQ (Chase Combining) 269
6.2.2 Type-II Hybrid ARQ (Full IR) 270
6.2.3 Type-III Hybrid ARQ (Partial IR) 273
References 275
7 Coded Modulation 277
Andrey Trofimov
7.1 Principle of Coded Modulation 277
7.1.1 Illustrative Example 280
7.2 Modulation Mapping by Signal Set Partitioning 282
7.3 Ungerboeck Codes 285
7.4 Performance Estimation of TCM System 287
7.4.1 Squared Distance Structure of PSK and QAM Constellations 287
7.4.2 Upper Bound on Error Event Probability and Bit Error Probability for
TCM 289
References 299
8 MIMO 301
Andrei Ovchinnikov and Sergei Semenov
8.1 MIMO Channel Model 301
8.1.1 Fading in Narrowband Channels 301
8.1.2 Fading Countermeasures: Diversity 303
8.1.3 MIMO Channel model 306
8.2 Space-Time Coding 310
8.2.1 Maximum Ratio Combining 310
8.2.2 Definition of Space-Time Codes 311
8.2.3 Space-Time Codes with Two Transmit Antennas 312
8.2.4 Construction Criteria for Space-Time Codes 314
8.3 Orthogonal Designs 317
8.3.1 Real Orthogonal Designs 317
8.3.2 Complex Orthogonal Designs 319
8.3.3 Decoding of Space-Time Codes 323
8.3.4 Error Probability for Orthogonal Space-Time Codes 326
8.4 Space-Time Trellis Codes 327
8.4.1 Space-Time Trellis Codes 327
8.4.2 Space-Time Turbo Trellis Codes 330
8.5 Differential Space-Time Codes 334
8.6 Spatial Multiplexing 337
8.6.1 General Concepts 337
8.6.2 V-BLAST 339
8.6.3 D-BLAST 341
8.6.4 Turbo-BLAST 342
8.7 Beamforming 344
References 348
9 Multiple Access Methods 351
Dmitry Osipov, Jarkko Paavola, and Jussi Poikonen
9.1 Frequency Division Multiple Access 353
9.1.1 Spectral Reuse 355
9.1.2 OFDMA 356
9.1.3 SC-FDMA 358
9.1.4 WDMA 359
9.2 Time Division Multiple Access 359
9.3 Code Division Multiple Access 360
9.3.1 Direct-Sequence CDMA 360
9.3.2 Frequency-Hopping CDMA 366
9.4 Advanced MA Methods 367
9.4.1 Multicarrier CDMA 367
9.4.2 Random OFDMA 368
9.4.3 DHA-FH-CDMA 369
9.5 Random Access Multiple Access Methods 371
9.6 Conclusions 376
References 376
10 Standardization in IEEE 802.11, 802.16 381
Tuomas Laine, Zexian Li, Andrei Malkov, and Prabodh Varshney
10.1 IEEE Overview 381
10.2 Standard Development Process 384
10.3 IEEE 802.11 Working Group 385
10.4 IEEE 802.16 Working Group 386
10.5 IEEE 802.11 388
10.5.1 Overview and Scope 388
10.5.2 Frequency Plan 388
10.5.3 Reference Model 389
10.5.4 Architecture 390
10.5.5 802.11a 391
10.5.6 802.11b 392
10.5.7 802.11g 394
10.5.8 802.11n 395
10.5.9 Future Developments 397
10.6 IEEE 802.16x 398
10.6.1 Key PHY Features of the IEEE 802.16e 398
10.6.2 IEEE 802.16m 400
References 428
11 Standardization in 3GPP 429
Asbjørn Grøvlen, Kari Hooli, Matti Jokimies, Kari Pajukoski, Sergei
Semenov, and Esa Tiirola
11.1 Standardization Process and Organization 429
11.1.1 General 429
11.1.2 Organization of 3GPP 430
11.1.3 Organization of TSG RAN 430
11.1.4 Standardization Process 431
11.1.5 3GPP Releases 432
11.1.6 Frequency Bands and 3GPP Releases 433
11.1.7 RAN Specifications 433
11.2 3G WCDMA 433
11.2.1 WCDMA Concept. Logical, Transport and Physical Channels 434
11.2.2 Logical and Transport Channels 435
11.2.3 Physical Channels 440
11.2.4 Coding, Spreading and Modulation 459
11.2.5 Cell Search 476
11.2.6 Power Control Procedures 476
11.2.7 Handover Procedures 479
11.2.8 Transmit Diversity 486
11.3 3.5G HSDPA/HSUPA 490
11.3.1 HSDPA 490
11.3.2 HSUPA 536
11.3.3 CPC 574
11.4 4G LTE 577
11.4.1 LTE Downlink 577
11.4.2 LTE Uplink 592
References 602
12 CDMA2000 and Its Evolution 605
Andrei Ovchinnikov
12.1 Development of 3G CDMA2000 Standard 605
12.1.1 IS-95 Family of Standards (cdmaOne) 605
12.1.2 IS-2000 Family of Standards 606
12.2 Reverse Channel of Physical Layer in CDMA2000 Standard 611
12.2.1 Reverse Channel Structure 611
12.2.2 Forward Error Correction (FEC) 612
12.2.3 Codeword Symbols Repetition 615
12.2.4 Puncturing 618
12.2.5 Block Interleaving 618
12.2.6 Orthogonal Modulation and Orthogonal Spreading 619
12.2.7 Direct Sequence Spreading and Quadrature Spreading 619
12.2.8 Frame Quality Indicator 622
12.3 Forward Channel of Physical Layer in CDMA2000 Standard 623
12.3.1 Forward Channel Structure 623
12.3.2 Forward Error Correction 625
12.3.3 Codeword Symbols Repetition 629
12.3.4 Puncturing 630
12.3.5 Block Interleaving 630
12.3.6 Sequence Repetition 630
12.3.7 Data Scrambling 630
12.3.8 Orthogonal and Quasi-Orthogonal Spreading 631
12.3.9 Quadrature Spreading 631
12.3.10 Frame Quality Indicator 631
12.4 Architecture Model of CDMA2000 1xEV-DO Standard 631
12.4.1 Structure of Physical Layer Packet 632
12.4.2 FCS Computation 632
12.5 Access Terminal of the CDMA2000 1xEV-DO Standard 633
12.5.1 Power Control 633
12.5.2 Reverse Channel Structure 633
12.5.3 Modulation Parameters and Transmission Rates 634
12.5.4 Access Channel 634
12.5.5 Reverse Traffic Channel 636
12.5.6 Encoding 640
12.5.7 Channel Interleaving and Repetition 641
12.5.8 Quadrature Spreading 641
12.6 Access Network of the CDMA2000 1xEV-DO Standard 643
12.6.1 Forward Channel Structure 643
12.6.2 Modulation Parameters and Transmission Rates 645
12.6.3 Pilot Channel 645
12.6.4 Forward MAC Channel 645
12.6.5 Control Channel 647
12.6.6 Forward Traffic Channel 647
12.6.7 Time-Division Multiplexing 651
12.6.8 Quadrature Spreading 651
References 654
Index 655
List of Contributors xiii
Acknowledgements xv
Introduction xvii
1 Channel Models and Reliable Communication 1
Evgenii Krouk, Andrei Ovchinnikov, and Jussi Poikonen
1.1 Principles of Reliable Communication 1
1.2 AWGN 2
1.2.1 Baseband Representation of AWGN 2
1.2.2 From Sample SNR to Eb /N0 5
1.3 Fading Processes in Wireless Communication Channels 6
1.3.1 Large-Scale Fading (Path Loss) 7
1.3.2 Medium-Scale Fading (Shadowing) 10
1.3.3 Small-Scale Fading (Multipath Propagation) 11
1.4 Modelling Frequency-Nonselective Fading 14
1.4.1 Rayleigh and Rice Distributions 14
1.4.2 Maximum Doppler Frequency Shift 15
1.4.3 Wide-Sense Stationary Stochastic Processes 15
1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading 15
1.4.5 SNR in Rayleigh Fading Channels 17
1.5 WSSUS Models for Frequency-Selective Fading 18
1.5.1 Basic Principles 18
1.5.2 Definitions 19
References 19
2 Modulation 21
Sergei Semenov
2.1 Basic Principles of Bandpass Modulation 21
2.1.1 The Complex Representation of a Bandpass Signal 22
2.1.2 Representation of Signal with Basis Functions 27
2.1.3 Pulse Shaping 31
2.1.4 Matched Filter 35
2.2 PSK 38
2.2.1 BPSK 38
2.2.2 QPSK 43
2.2.3 M-PSK 47
2.2.4 DPSK 48
2.2.5 OQPSK 50
2.2.6 ¿/4-QPSK 51
2.3 MSK 54
2.3.1 GMSK 54
2.4 QAM 60
2.5 OFDM 66
References 81
3 Block Codes 83
Grigorii Kabatiansky, Evgenii Krouk, Andrei Ovchinnikov, and Sergei Semenov
3.1 Main Definitions 83
3.2 Algebraic Structures 86
3.3 Linear Block Codes 94
3.4 Cyclic Codes 98
3.5 Bounds on Minimum Distance 114
3.6 Minimum Distance Decoding 119
3.7 Information Set Decoding 120
3.8 Hamming Codes 128
3.9 Reed-Solomon Codes 131
3.10 BCH Codes 133
3.11 Decoding of BCH Codes 135
3.12 Sudan Algorithm and Its Extensions 139
3.13 LDPC Codes 146
3.13.1 LDPC Constructions 148
3.13.2 Decoding of LDPC Codes 154
References 157
4 Convolutional Codes and Turbo-Codes 161
Sergei Semenov and Andrey Trofimov
4.1 Convolutional Codes Representation and Encoding 161
4.2 Viterbi Decoding Algorithm 169
4.2.1 Hard Decision Viterbi Algorithm 170
4.2.2 Soft Decision Viterbi Algorithm 174
4.3 List Decoding 178
4.4 Upper Bound on Bit Error Probability for Viterbi Decoding 178
4.5 Sequential Decoding 183
4.5.1 Stack Algorithm 184
4.5.2 Fano Algorithm 187
4.6 Parallel-Concatenated Convolutional Codes and Soft Input Soft Output
Decoding 190
4.7 SISO Decoding Algorithms 195
4.7.1 MAP Algorithm and Its Variants 195
4.7.2 Soft-In/Soft-Out Viterbi Algorithm (SOVA) 201
References 205
4.a Modified Chernoff Bound and Some Applications 206
Andrey Trofimov
References 219
5 Equalization 221
Sergei Semenov
5.1 Equalization with Filtering 222
5.1.1 Zero-Forcing Equalization 226
5.1.2 MMSE Equalization 228
5.1.3 DFE 233
5.2 Equalization Based on Sequence Estimation 239
5.2.1 MLSE Equalization 239
5.2.2 Sphere Detection 242
5.3 RAKE Receiver 251
5.4 Turbo Equalization 254
5.5 Performance Comparison 259
References 261
6 ARQ 263
Evgenii Krouk
6.1 Basic ARQ Schemes 263
6.1.1 Basic Concepts 263
6.1.2 Stop-and-Wait ARQ 265
6.1.3 ARQ with N Steps Back (Go Back N, GBN) 267
6.1.4 ARQ with Selective Repeat (SR) 268
6.2 Hybrid ARQ 269
6.2.1 Type-I Hybrid ARQ (Chase Combining) 269
6.2.2 Type-II Hybrid ARQ (Full IR) 270
6.2.3 Type-III Hybrid ARQ (Partial IR) 273
References 275
7 Coded Modulation 277
Andrey Trofimov
7.1 Principle of Coded Modulation 277
7.1.1 Illustrative Example 280
7.2 Modulation Mapping by Signal Set Partitioning 282
7.3 Ungerboeck Codes 285
7.4 Performance Estimation of TCM System 287
7.4.1 Squared Distance Structure of PSK and QAM Constellations 287
7.4.2 Upper Bound on Error Event Probability and Bit Error Probability for
TCM 289
References 299
8 MIMO 301
Andrei Ovchinnikov and Sergei Semenov
8.1 MIMO Channel Model 301
8.1.1 Fading in Narrowband Channels 301
8.1.2 Fading Countermeasures: Diversity 303
8.1.3 MIMO Channel model 306
8.2 Space-Time Coding 310
8.2.1 Maximum Ratio Combining 310
8.2.2 Definition of Space-Time Codes 311
8.2.3 Space-Time Codes with Two Transmit Antennas 312
8.2.4 Construction Criteria for Space-Time Codes 314
8.3 Orthogonal Designs 317
8.3.1 Real Orthogonal Designs 317
8.3.2 Complex Orthogonal Designs 319
8.3.3 Decoding of Space-Time Codes 323
8.3.4 Error Probability for Orthogonal Space-Time Codes 326
8.4 Space-Time Trellis Codes 327
8.4.1 Space-Time Trellis Codes 327
8.4.2 Space-Time Turbo Trellis Codes 330
8.5 Differential Space-Time Codes 334
8.6 Spatial Multiplexing 337
8.6.1 General Concepts 337
8.6.2 V-BLAST 339
8.6.3 D-BLAST 341
8.6.4 Turbo-BLAST 342
8.7 Beamforming 344
References 348
9 Multiple Access Methods 351
Dmitry Osipov, Jarkko Paavola, and Jussi Poikonen
9.1 Frequency Division Multiple Access 353
9.1.1 Spectral Reuse 355
9.1.2 OFDMA 356
9.1.3 SC-FDMA 358
9.1.4 WDMA 359
9.2 Time Division Multiple Access 359
9.3 Code Division Multiple Access 360
9.3.1 Direct-Sequence CDMA 360
9.3.2 Frequency-Hopping CDMA 366
9.4 Advanced MA Methods 367
9.4.1 Multicarrier CDMA 367
9.4.2 Random OFDMA 368
9.4.3 DHA-FH-CDMA 369
9.5 Random Access Multiple Access Methods 371
9.6 Conclusions 376
References 376
10 Standardization in IEEE 802.11, 802.16 381
Tuomas Laine, Zexian Li, Andrei Malkov, and Prabodh Varshney
10.1 IEEE Overview 381
10.2 Standard Development Process 384
10.3 IEEE 802.11 Working Group 385
10.4 IEEE 802.16 Working Group 386
10.5 IEEE 802.11 388
10.5.1 Overview and Scope 388
10.5.2 Frequency Plan 388
10.5.3 Reference Model 389
10.5.4 Architecture 390
10.5.5 802.11a 391
10.5.6 802.11b 392
10.5.7 802.11g 394
10.5.8 802.11n 395
10.5.9 Future Developments 397
10.6 IEEE 802.16x 398
10.6.1 Key PHY Features of the IEEE 802.16e 398
10.6.2 IEEE 802.16m 400
References 428
11 Standardization in 3GPP 429
Asbjørn Grøvlen, Kari Hooli, Matti Jokimies, Kari Pajukoski, Sergei
Semenov, and Esa Tiirola
11.1 Standardization Process and Organization 429
11.1.1 General 429
11.1.2 Organization of 3GPP 430
11.1.3 Organization of TSG RAN 430
11.1.4 Standardization Process 431
11.1.5 3GPP Releases 432
11.1.6 Frequency Bands and 3GPP Releases 433
11.1.7 RAN Specifications 433
11.2 3G WCDMA 433
11.2.1 WCDMA Concept. Logical, Transport and Physical Channels 434
11.2.2 Logical and Transport Channels 435
11.2.3 Physical Channels 440
11.2.4 Coding, Spreading and Modulation 459
11.2.5 Cell Search 476
11.2.6 Power Control Procedures 476
11.2.7 Handover Procedures 479
11.2.8 Transmit Diversity 486
11.3 3.5G HSDPA/HSUPA 490
11.3.1 HSDPA 490
11.3.2 HSUPA 536
11.3.3 CPC 574
11.4 4G LTE 577
11.4.1 LTE Downlink 577
11.4.2 LTE Uplink 592
References 602
12 CDMA2000 and Its Evolution 605
Andrei Ovchinnikov
12.1 Development of 3G CDMA2000 Standard 605
12.1.1 IS-95 Family of Standards (cdmaOne) 605
12.1.2 IS-2000 Family of Standards 606
12.2 Reverse Channel of Physical Layer in CDMA2000 Standard 611
12.2.1 Reverse Channel Structure 611
12.2.2 Forward Error Correction (FEC) 612
12.2.3 Codeword Symbols Repetition 615
12.2.4 Puncturing 618
12.2.5 Block Interleaving 618
12.2.6 Orthogonal Modulation and Orthogonal Spreading 619
12.2.7 Direct Sequence Spreading and Quadrature Spreading 619
12.2.8 Frame Quality Indicator 622
12.3 Forward Channel of Physical Layer in CDMA2000 Standard 623
12.3.1 Forward Channel Structure 623
12.3.2 Forward Error Correction 625
12.3.3 Codeword Symbols Repetition 629
12.3.4 Puncturing 630
12.3.5 Block Interleaving 630
12.3.6 Sequence Repetition 630
12.3.7 Data Scrambling 630
12.3.8 Orthogonal and Quasi-Orthogonal Spreading 631
12.3.9 Quadrature Spreading 631
12.3.10 Frame Quality Indicator 631
12.4 Architecture Model of CDMA2000 1xEV-DO Standard 631
12.4.1 Structure of Physical Layer Packet 632
12.4.2 FCS Computation 632
12.5 Access Terminal of the CDMA2000 1xEV-DO Standard 633
12.5.1 Power Control 633
12.5.2 Reverse Channel Structure 633
12.5.3 Modulation Parameters and Transmission Rates 634
12.5.4 Access Channel 634
12.5.5 Reverse Traffic Channel 636
12.5.6 Encoding 640
12.5.7 Channel Interleaving and Repetition 641
12.5.8 Quadrature Spreading 641
12.6 Access Network of the CDMA2000 1xEV-DO Standard 643
12.6.1 Forward Channel Structure 643
12.6.2 Modulation Parameters and Transmission Rates 645
12.6.3 Pilot Channel 645
12.6.4 Forward MAC Channel 645
12.6.5 Control Channel 647
12.6.6 Forward Traffic Channel 647
12.6.7 Time-Division Multiplexing 651
12.6.8 Quadrature Spreading 651
References 654
Index 655