223,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
112 °P sammeln
  • Gebundenes Buch

Providing a modern update of the field, Mossbauer Spectroscopy focuses on applications across a broad range of fields, including analysis of inorganic elements, nanoparticles, metalloenzymyes, biomolecules (including proteins), glass, coal, and iron. Ideal for a broad range of scientists, this one-stop reference presents advances gained in the field over past two decades, including a detailed theoretical description of Mossbauer spectroscopy, an extensive treatment of Mossbauer spectroscopy in applied areas, and challenges and future opportunities for the further development of this…mehr

Produktbeschreibung
Providing a modern update of the field, Mossbauer Spectroscopy focuses on applications across a broad range of fields, including analysis of inorganic elements, nanoparticles, metalloenzymyes, biomolecules (including proteins), glass, coal, and iron. Ideal for a broad range of scientists, this one-stop reference presents advances gained in the field over past two decades, including a detailed theoretical description of Mossbauer spectroscopy, an extensive treatment of Mossbauer spectroscopy in applied areas, and challenges and future opportunities for the further development of this technique.
A one-stop reference for determining the oxidation states of elements so that oxidation eduction chemistry can be studied across a wide variety of systems, this book presents advances in the field from the last two decades. Beginning with a detailed theoretical description of Mossbauer spectroscopy, followed by an extensive treatment of its use in applied areas such as synchrotron radiation, biotechnology, and nanoparticle analysis, the book discusses future opportunities for the further development of this technique. Designed for spectroscopists, inorganic, physical, analytical, and solid-state chemists and other researchers.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
VIRENDER K. SHARMA received his Ph.D. in?Marine and Atmospheric Chemistry at the Florida Insitute of Technology after graduating from the Indian Institute of Technology in New Delhi, India with the Master in Technology.?He?is?currently?Professor of Chemistry at F.I.T. He was a visiting research scholar at Stanford University under the advisory of Professor Ed Solomon and won both the?ACS Faculty of the Year award in 2008 and the?Orlando Section Outstanding Chemist Award.?His research interests include the study of kinetics and mechanisms of oxidations by transition metals in higher oxidation states in aqueous solution, development of innovative and effective methods for reducing the level of contaminants in the aquatic environment, and the physical chemistry of natural waters. GOESTER KLINGELHOEFER is a professor?of inorganic and analytical chemistry and the University of Mainz, Germany. TETSUAKI NISHIDA is professor of chemistry at?Kinki University, Japan.