- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Written to record and report on recent research progresses in the field of molten salts, Molten Salts Chemistry and Technology focuses on molten salts and ionic liquids for sustainable supply and application of materials. Including coverage of molten salt reactors, electrodeposition, aluminium electrolysis, electrochemistry, and electrowinning, the text provides researchers and postgraduate students with applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology.
Both high temperature…mehr
Andere Kunden interessierten sich auch für
- Green Energetic Materials203,99 €
- Jin Zhong ZhangHydrogen Generation, Storage and Utilization143,99 €
- Maria-Magdalena TitiriciSustainable Carbon Materials from Hydrothermal Processes176,99 €
- Macromolecular Engineering1.095,99 €
- Biorefinery Co-Products155,99 €
- Separation and Purification Technologies in Biorefineries255,99 €
- Richard CatlowComputational Approaches to Energy Materials190,99 €
-
-
-
Written to record and report on recent research progresses in the field of molten salts, Molten Salts Chemistry and Technology focuses on molten salts and ionic liquids for sustainable supply and application of materials. Including coverage of molten salt reactors, electrodeposition, aluminium electrolysis, electrochemistry, and electrowinning, the text provides researchers and postgraduate students with applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology.
Both high temperature molten salts and room temperature ionic liquids (collectively termed liquid salts) have unique properties, including good heat capacity, good electrical conductivity and, in some cases, chemical catalytic properties. They are critical for the efficient production and processing of many different materials, for example the electrolytic extraction and refining of aluminium and silicon, particularly important in the post fossil fuel era. Other industrial applications range from solvents and fuel cells to alloy heat treatments and pyroprocessing in nuclear fuel.
With a focus on sustainable processes for the production and processing of materials, this book contains over 60 chapters and is organized into seven areas:
Aluminium Electrolysis
New Processes for Electrowinning
Modeling and Thermodynamics
High Temperature Experimental Techniques
Electrochemistry in Ionic Liquids
Nuclear Energy
Energy Technology
Intended to provide a solid understanding of the properties, experimental methods, theoretical methods and applications of these materials, Molten Salts: Chemistry and Technology is an unrivalled reference for chemists, engineers and materials scientists in academia, research and industry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Both high temperature molten salts and room temperature ionic liquids (collectively termed liquid salts) have unique properties, including good heat capacity, good electrical conductivity and, in some cases, chemical catalytic properties. They are critical for the efficient production and processing of many different materials, for example the electrolytic extraction and refining of aluminium and silicon, particularly important in the post fossil fuel era. Other industrial applications range from solvents and fuel cells to alloy heat treatments and pyroprocessing in nuclear fuel.
With a focus on sustainable processes for the production and processing of materials, this book contains over 60 chapters and is organized into seven areas:
Aluminium Electrolysis
New Processes for Electrowinning
Modeling and Thermodynamics
High Temperature Experimental Techniques
Electrochemistry in Ionic Liquids
Nuclear Energy
Energy Technology
Intended to provide a solid understanding of the properties, experimental methods, theoretical methods and applications of these materials, Molten Salts: Chemistry and Technology is an unrivalled reference for chemists, engineers and materials scientists in academia, research and industry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons / Wiley-Blackwell
- 1. Auflage
- Seitenzahl: 632
- Erscheinungstermin: 23. Juni 2014
- Englisch
- Abmessung: 244mm x 196mm x 36mm
- Gewicht: 1220g
- ISBN-13: 9781118448731
- ISBN-10: 1118448731
- Artikelnr.: 38106396
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons / Wiley-Blackwell
- 1. Auflage
- Seitenzahl: 632
- Erscheinungstermin: 23. Juni 2014
- Englisch
- Abmessung: 244mm x 196mm x 36mm
- Gewicht: 1220g
- ISBN-13: 9781118448731
- ISBN-10: 1118448731
- Artikelnr.: 38106396
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Marcelle Gaune-Escard is Research Director at Ecole Polytechnique, CNRS, Marseille, France. Most of her scientific activities focus on the multi-technique physicochemical, structural characterization and modeling of lanthanide halides melts. She has contributed over 250 journal papers, and over 300 conference presentations, and been involved in Chairing and organising numerous International Molten Salt Conferences. She is well-known for editing and publishing her own newsletter, Molten Salts & Ionic Liquids (since 1976, distribution 600, 24 countries, quarterly; Web edition since 1996). In 2004 Marcelle was awarded the Max Bredig Award in Molten Salt Chemistry, granted by the Electrochemical Society (USA) for the first time to a French female scientist. Geir Martin Haarberg is a Professor at the Materials Science and Engineering department at Norwegian University of Science and Technology, Trondheim, Norway since 2000. He has authored around 150 publications, including articles published in international journals, and conference proceedings (71).
List of Contributors xxiii Foreword xxix Preface xxxi 1 ALUMINIUM ELECTROLYSIS 1 1.1 Formation of CO2 and CO on Carbon Anodes in Molten Salts 3 J. Thonstad and E. Sandnes 1.2 Interaction of Carbon with Molten Salts 9 Derek Fray 1.3 Anode Processes on Carbon in Chloride Melts with Dissolved Oxides 17 E. Sandnes, G. M. Haarberg, A. M. Martinez, K. S. Osen and R. Tunold 1.4 Aluminium Electrolysis with Inert Anodes and Wettable Cathodes and with Low Energy Consumption 27 Ioan Galasiu and Rodica Galasiu 1.5 Influence of the Sulfur Content in the Carbon Anodes in Aluminum Electrolysis - a Laboratory Study 39 S. Pietrzyk and J. Thonstad 1.6 Aluminum Electrolysis in an Inert Anode Cell 53 O. Tkacheva, J. Spangenberger, B. Davis, and J. Hryn 1.7 Effect of Phosphorus Impurities on the Current Efficiency for Aluminium Deposition from Cryolite-Alumina Melts in a Laboratory Cell 71 R. Meirbekova, G. Sævarsdottir, J. P. Armoo, and G. M. Haarberg 1.8 Influence of LOI on Alumina Dissolution in Molten Aluminum Electrolyte 77 Y. Yang, B. Gao, X. Hu, Z. Wang, and Z. Shi 1.9 The Electrolytic Production of Al-Cu-Li Master Alloy by Molten Salts Electrolysis 85 B. Gao, S. Wang, J. Qu, Z. Shi, X. Hu, and Z. Wang 1.10 Transference Numbers in Na(K) Cryolite-Based Systems 95 J. Hýve, P. Fellner, and J. Thonstad 1.11 125 years of the Hall Héroult Process - What Made It a Success? 103 O.-A. Lorentsen 2 NEW PROCESSES FOR ELECTROWINNING 113 2.1 Ionic Conduction of Oxygen and Calciothermic Reduction in Molten CaO-CaCl2 115 R. O. Suzuki, D. Yamada, S. Osaki, R. F. Descallar-Arriesgado, and T. Kikuchi 2.2 Effects of Temperature and Boron Concentration of a Boron-Doped Diamond (BDD) Electrode on NF3 Current Efficiency, and Stability of BDD Electrode in Molten NH4F
2HF 123 A. Tasaka, Y. Iida, T. Shiono, M. Uno, Y. Nishiki, T. Furuta, M. Saito, and M. Inaba 2.3 Nanoparticle Size Control Using a Rotating Disk Anode for Plasma-Induced Cathodic Discharge Electrolysis 133 M. Tokushige, T. Nishikiori, and Y. Ito 2.4 Cathodic Phenomena in Li Electrolysis in LiCl-KCl Melt 143 T. Takenaka, T. Morishige, and M. Umehara 3 MODELING AND THERMODYNAMICS 149 3.1 Ionic Conductivity and Molecular Structure of a Molten xZnBr2-(1
x)ABr (A = Li, Na, K) System 151 T. Ohkubo, T. Tahara, K. Takahashi, and Y. Iwadate 3.2 Molten Salts: from First Principles to Material Properties 159 M. Salanne, P. A. Madden, and C. Simon 3.3 Different Phases of Fluorido-Tantalates 163 M. Boca, B. Kubýková, F. imko, M. Gembicky, J. Moncol, and K. Jomová 3.4 Molecular Dynamics Simulation of SiO2 and SiO2-CaO Mixtures 171 A. Jacob, A. Gray-Weale, and P. J. Masset 3.5 Thermodynamic Investigation of the BaF2-LiF-NdF3 System 181 M. Berkani and M. Gaune-Escard 3.6 The Stable Complex Species in Melts of Alkali Metal Halides: Quantum-Chemical Approach 193 V. G. Kremenetsky, O. V. Kremenetskaya, and S. A. Kuznetsov 3.7 Molecular and Ionic Species in Vapor over Molten Ytterbium Bromides 203 M. F. Butman, D. N. Sergeev, V. B. Motalov, L. S. Kudin, L. Rycerz,and M. Gaune-Escard 3.8 Lithium Hydride Solubility in Molten Chlorides 213 P. J. Masset 4 HIGH-TEMPERATURE EXPERIMENTAL TECHNIQUES 219 4.1 In Situ Experimental Approach of Speciation in Molten Fluorides: A Combination of NMR, EXAFS, and Molecular Dynamics 221 C. Bessada, O. Pauvert, L. Maksoud, D. Zanghi, V. Sarou-Kanian, M. Gobet, A. L. Rollet, A. Rakhmatullin, M. Salanne, C. Simon, D. Thiaudiere, and H. Matsuura 4.2 NMR Study of Melts in the System Na3AlF6-Al2O3-AlPO4 229 A. Rakhmatullin, M. Keppert, G. M. Haarberg, F. imko, and C. Bessada 4.3 Structure and Dynamics of Alkali and Alkaline Earth Molten Fluorides by High-Temperature NMR and Molecular Dynamics 235 G. Moussaed, V. Sarou-Kanian, M. Gobet, M. Salanne, C. Simon, A.-L. Rollet and C. Bessada 4.4 Speciation of Niobium in Chloride Melts: An Electronic Absorption Spectroscopic Study 243 I. B. Polovov, N. P. Brevnova, V. A. Volkovich, M. V. Chernyshov, B. D. Vasin, and O. I. Rebrin 4.5 Electrode Processes in Vanadium-Containing Chloride Melts 257 I. B. Polovov, M. E. Tray, M. V. Chernyshov, V. A. Volkovich, B. D. Vasin, and O. I. Rebrin 4.6 Electrodeposition of Lead from Chloride Melts 283 G. M. Haarberg, L.-E. Owe, B. Qin, J. Wang, and R. Tunold 4.7 Electrodeposition of Ti from K2TiF6 in NaCl-KCl-NaF Melts 287 C.A.C. Sequeira 4.8 Effect of Electrolysis Parameters on the Coating Composition and Properties during Electrodeposition of Tungsten Carbides and Zirconium Diborides 295 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.9 Galvanic Coatings of Molybdenum and Tungsten Carbides from Oxide Melts: Electrodeposition and Initial Stages of Nucleation 303 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.10 Electrolytic Production of Matrix Coated Fibres for Titanium Matrix Composites 319 J. G. Gussone and J. M. Hausmann 4.11 Electrochemical Synthesis of Double Molybdenum Carbides 329 V.S. Dolmatov, S.A. Kuznetsov, E.V. Rebrov, and J.C. Schouten 5 ELECTROCHEMISTRY IN IONIC LIQUIDS 339 5.1 Electrodeposition of Aluminium from Ionic Liquids 341 O.B. Babushkina, E.O. Lomako, J. Wehr, and O. Rohr 5.2 Electrolytic Synthesis of (CF3)3N from a Room Temperature Molten Salt of (CH3)3N
mHF with BDD Electrode 351 A. Tasaka, K. Ikeda, N. Osawa, M. Saito, M. Uno, Y. Nishki, T. Furuta, and M. Inaba 5.3 Electrodeposition of Reactive Elements from Ionic Liquids 359 A. Bund, A. Ispas, and S. Ivanov 5.4 Electrodeposition of Magnesium in Ionic Liquid at 150-200 C B. Gao, T. Nohira, R. Hagiwara, and Z. Wang 5.5 Room-Temperature Ionic Liquid-Based SEM/EDX Techniques for Biological Specimens and in situ Electrode Reaction Observation 373 T. Tsuda, E. Mochizuki, S. Kishida, N. Nemoto, Y. Ishigaki, and S. Kuwabata 6 NUCLEAR ENERGY 1 6.1 New Routes for the Production of Reactor Grade Zirconium 391 Y. Xiao, A. van Sandwijk, Y. Yang, and V. Laging 6.2 NMR and EXAFS Investigations of Lanthanum Fluoride Solubility in Molten LiF-ZrF4-LaF3 Mixture: Application in Molten Salts Reactor 403 L. Maksoud, M. Gobet, D. Zanghi, H. Matsuura, M. Numakura, O. Pauvert, and C.Bessada 6.3 Actinides Oxidative Back-Extraction from Liquid Aluminium, in Molten Chloride Media 411 E. Mendes, O. Conocar, A. Laplace, N. Douyère, J. Lacquement, and M. Miguirditchian 6.4 Formation of Uranium Fluoride Complex by Addition of Fluoride Ion to Molten NaCl-CsCl Melts 421 A. Uehara, O. Shirai, T. Fujii, T. Nagai, N. Sato, and H. Yamana 6.5 Corrosion of Austenitic Stainless Steels in Chloride Melts 427 A. V. Abramov, I. B. Polovov, V. A. Volkovich, and O. I. Rebrin 6.6 Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YCl3: Approaches from Fundamentals to Pyrochemical Reprocessing 449 Y. Iwadate, T. Ohkubo, T. Michii, H. Matsuura, A. Kajinami, K. Takase, N. Ohtori, N. Umesaki, R. Fujita, K. Mizuguchi, H. Kofuji, M. Myochin, M. Misawa, T. Fukunaga, and K. Itoh 6.7 Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic Fluorides 459 M. Numakura, N. Sato, C. Bessada, A. Nezu, H. Akatsuka, and H. Matsuura 6.8 Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts 467 M. Straka , F. Lis
y, and L. Szatmáry 6.9 Quantitative Analysis of Lanthanides in Molten Chloride by Absorption Spectrophotometry 475 T. Uda, T. Fujii, K. Fukasawa, A. Uehara, K. Kinoshita, T. Koyama and H. Yamana 6.10 Formation of Rare Earth Phosphates in NaCl-2CsCl-Based Melts 481 V. A. Volkovich, A. B. Ivanov, S. M. Yakimov, I. B. Polovov, B. D. Vasin, A. V. Chukin, A. K. Shtolts, and T. R. Griffiths 6.11 A Novel Method for Trapping and Studying Volatile Molybdenum(V) in Alkali Chloride Melts: Implications for Treating Spent Nuclear Fuel 489 V. A. Volkovich, I. B. Polovov, R. V. Kamalov, B. D. Vasin, and T. R. Griffiths 6.12 Electrochemical Measurement of Diffusion Coefficient of U in Liquid Cd 499 T. Murakami, M. Kurata, Y. Sakamura, T. Koyama, N. Akiyama, S. Kitawaki, A. Nakayoshi, and M. Fukushima 6.13 Reduction of Uranyl(VI) Species in Alkali Chloride Melts 507 V. A. Volkovich, D. E. Aleksandrov, D. S. Maltsev, B. D. Vasin, I. B. Polovov, and T. R. Griffiths 7 ENERGY TECHNOLOGY 521 7.1 Molten Salt Electrochemical Processes Directed Toward a Low Carbon Society 523 Yasuhiko Ito 7.2 Theoretical and Experimental Approach to Improve the Li2CO3-K2CO3 Eutectic Properties in MCFC Devices 535 V. Lair, V. Albin, A. Ringuedé, and M. Cassir 7.3 Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce0.9Gd0.1O1.95) for Hybrid Electrolyte 543 M. Mizuhata, T. Ohashi, and S. Deki 7.4 Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications 551 T. Bauer, D. Laing, and R. Tamme 7.5 Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to Middle Temperatures 563 R. Hagiwara, T. Nohira, K. Numata, T. Koketsu, T. Yamamoto, T. Fujimori, T. Ishibashi, A. Fukunaga, S. Sakai, K. Nitta, and S. Inazawa 7.6 Electrochemistry of Anodic Reaction in Molten Salt Containing LiOH for Lithium-Hydrogen Energy Cycle 571 Y. Sato, O. Takeda, M. Li, and M. Hoshi 7.7 Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte 577 E. Olsen, S. Rolseth, and J. Thonstad 7.8 Electrochemical Behaviour of Light Lanthanides in Molten Chlorides with Fluorides 585 Y. Shimohara, A. Nezu, M. Numakura, H. Akatsuka, and H. Matsuura 7.9 Using Molten Fluoride Melts for Silicon Electrorefining 597 P. Taxil, L. Massot, A.-L. Bieber, M. Gibilaro, L. Cassayre, and P. Chamelot Index 605
2HF 123 A. Tasaka, Y. Iida, T. Shiono, M. Uno, Y. Nishiki, T. Furuta, M. Saito, and M. Inaba 2.3 Nanoparticle Size Control Using a Rotating Disk Anode for Plasma-Induced Cathodic Discharge Electrolysis 133 M. Tokushige, T. Nishikiori, and Y. Ito 2.4 Cathodic Phenomena in Li Electrolysis in LiCl-KCl Melt 143 T. Takenaka, T. Morishige, and M. Umehara 3 MODELING AND THERMODYNAMICS 149 3.1 Ionic Conductivity and Molecular Structure of a Molten xZnBr2-(1
x)ABr (A = Li, Na, K) System 151 T. Ohkubo, T. Tahara, K. Takahashi, and Y. Iwadate 3.2 Molten Salts: from First Principles to Material Properties 159 M. Salanne, P. A. Madden, and C. Simon 3.3 Different Phases of Fluorido-Tantalates 163 M. Boca, B. Kubýková, F. imko, M. Gembicky, J. Moncol, and K. Jomová 3.4 Molecular Dynamics Simulation of SiO2 and SiO2-CaO Mixtures 171 A. Jacob, A. Gray-Weale, and P. J. Masset 3.5 Thermodynamic Investigation of the BaF2-LiF-NdF3 System 181 M. Berkani and M. Gaune-Escard 3.6 The Stable Complex Species in Melts of Alkali Metal Halides: Quantum-Chemical Approach 193 V. G. Kremenetsky, O. V. Kremenetskaya, and S. A. Kuznetsov 3.7 Molecular and Ionic Species in Vapor over Molten Ytterbium Bromides 203 M. F. Butman, D. N. Sergeev, V. B. Motalov, L. S. Kudin, L. Rycerz,and M. Gaune-Escard 3.8 Lithium Hydride Solubility in Molten Chlorides 213 P. J. Masset 4 HIGH-TEMPERATURE EXPERIMENTAL TECHNIQUES 219 4.1 In Situ Experimental Approach of Speciation in Molten Fluorides: A Combination of NMR, EXAFS, and Molecular Dynamics 221 C. Bessada, O. Pauvert, L. Maksoud, D. Zanghi, V. Sarou-Kanian, M. Gobet, A. L. Rollet, A. Rakhmatullin, M. Salanne, C. Simon, D. Thiaudiere, and H. Matsuura 4.2 NMR Study of Melts in the System Na3AlF6-Al2O3-AlPO4 229 A. Rakhmatullin, M. Keppert, G. M. Haarberg, F. imko, and C. Bessada 4.3 Structure and Dynamics of Alkali and Alkaline Earth Molten Fluorides by High-Temperature NMR and Molecular Dynamics 235 G. Moussaed, V. Sarou-Kanian, M. Gobet, M. Salanne, C. Simon, A.-L. Rollet and C. Bessada 4.4 Speciation of Niobium in Chloride Melts: An Electronic Absorption Spectroscopic Study 243 I. B. Polovov, N. P. Brevnova, V. A. Volkovich, M. V. Chernyshov, B. D. Vasin, and O. I. Rebrin 4.5 Electrode Processes in Vanadium-Containing Chloride Melts 257 I. B. Polovov, M. E. Tray, M. V. Chernyshov, V. A. Volkovich, B. D. Vasin, and O. I. Rebrin 4.6 Electrodeposition of Lead from Chloride Melts 283 G. M. Haarberg, L.-E. Owe, B. Qin, J. Wang, and R. Tunold 4.7 Electrodeposition of Ti from K2TiF6 in NaCl-KCl-NaF Melts 287 C.A.C. Sequeira 4.8 Effect of Electrolysis Parameters on the Coating Composition and Properties during Electrodeposition of Tungsten Carbides and Zirconium Diborides 295 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.9 Galvanic Coatings of Molybdenum and Tungsten Carbides from Oxide Melts: Electrodeposition and Initial Stages of Nucleation 303 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.10 Electrolytic Production of Matrix Coated Fibres for Titanium Matrix Composites 319 J. G. Gussone and J. M. Hausmann 4.11 Electrochemical Synthesis of Double Molybdenum Carbides 329 V.S. Dolmatov, S.A. Kuznetsov, E.V. Rebrov, and J.C. Schouten 5 ELECTROCHEMISTRY IN IONIC LIQUIDS 339 5.1 Electrodeposition of Aluminium from Ionic Liquids 341 O.B. Babushkina, E.O. Lomako, J. Wehr, and O. Rohr 5.2 Electrolytic Synthesis of (CF3)3N from a Room Temperature Molten Salt of (CH3)3N
mHF with BDD Electrode 351 A. Tasaka, K. Ikeda, N. Osawa, M. Saito, M. Uno, Y. Nishki, T. Furuta, and M. Inaba 5.3 Electrodeposition of Reactive Elements from Ionic Liquids 359 A. Bund, A. Ispas, and S. Ivanov 5.4 Electrodeposition of Magnesium in Ionic Liquid at 150-200 C B. Gao, T. Nohira, R. Hagiwara, and Z. Wang 5.5 Room-Temperature Ionic Liquid-Based SEM/EDX Techniques for Biological Specimens and in situ Electrode Reaction Observation 373 T. Tsuda, E. Mochizuki, S. Kishida, N. Nemoto, Y. Ishigaki, and S. Kuwabata 6 NUCLEAR ENERGY 1 6.1 New Routes for the Production of Reactor Grade Zirconium 391 Y. Xiao, A. van Sandwijk, Y. Yang, and V. Laging 6.2 NMR and EXAFS Investigations of Lanthanum Fluoride Solubility in Molten LiF-ZrF4-LaF3 Mixture: Application in Molten Salts Reactor 403 L. Maksoud, M. Gobet, D. Zanghi, H. Matsuura, M. Numakura, O. Pauvert, and C.Bessada 6.3 Actinides Oxidative Back-Extraction from Liquid Aluminium, in Molten Chloride Media 411 E. Mendes, O. Conocar, A. Laplace, N. Douyère, J. Lacquement, and M. Miguirditchian 6.4 Formation of Uranium Fluoride Complex by Addition of Fluoride Ion to Molten NaCl-CsCl Melts 421 A. Uehara, O. Shirai, T. Fujii, T. Nagai, N. Sato, and H. Yamana 6.5 Corrosion of Austenitic Stainless Steels in Chloride Melts 427 A. V. Abramov, I. B. Polovov, V. A. Volkovich, and O. I. Rebrin 6.6 Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YCl3: Approaches from Fundamentals to Pyrochemical Reprocessing 449 Y. Iwadate, T. Ohkubo, T. Michii, H. Matsuura, A. Kajinami, K. Takase, N. Ohtori, N. Umesaki, R. Fujita, K. Mizuguchi, H. Kofuji, M. Myochin, M. Misawa, T. Fukunaga, and K. Itoh 6.7 Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic Fluorides 459 M. Numakura, N. Sato, C. Bessada, A. Nezu, H. Akatsuka, and H. Matsuura 6.8 Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts 467 M. Straka , F. Lis
y, and L. Szatmáry 6.9 Quantitative Analysis of Lanthanides in Molten Chloride by Absorption Spectrophotometry 475 T. Uda, T. Fujii, K. Fukasawa, A. Uehara, K. Kinoshita, T. Koyama and H. Yamana 6.10 Formation of Rare Earth Phosphates in NaCl-2CsCl-Based Melts 481 V. A. Volkovich, A. B. Ivanov, S. M. Yakimov, I. B. Polovov, B. D. Vasin, A. V. Chukin, A. K. Shtolts, and T. R. Griffiths 6.11 A Novel Method for Trapping and Studying Volatile Molybdenum(V) in Alkali Chloride Melts: Implications for Treating Spent Nuclear Fuel 489 V. A. Volkovich, I. B. Polovov, R. V. Kamalov, B. D. Vasin, and T. R. Griffiths 6.12 Electrochemical Measurement of Diffusion Coefficient of U in Liquid Cd 499 T. Murakami, M. Kurata, Y. Sakamura, T. Koyama, N. Akiyama, S. Kitawaki, A. Nakayoshi, and M. Fukushima 6.13 Reduction of Uranyl(VI) Species in Alkali Chloride Melts 507 V. A. Volkovich, D. E. Aleksandrov, D. S. Maltsev, B. D. Vasin, I. B. Polovov, and T. R. Griffiths 7 ENERGY TECHNOLOGY 521 7.1 Molten Salt Electrochemical Processes Directed Toward a Low Carbon Society 523 Yasuhiko Ito 7.2 Theoretical and Experimental Approach to Improve the Li2CO3-K2CO3 Eutectic Properties in MCFC Devices 535 V. Lair, V. Albin, A. Ringuedé, and M. Cassir 7.3 Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce0.9Gd0.1O1.95) for Hybrid Electrolyte 543 M. Mizuhata, T. Ohashi, and S. Deki 7.4 Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications 551 T. Bauer, D. Laing, and R. Tamme 7.5 Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to Middle Temperatures 563 R. Hagiwara, T. Nohira, K. Numata, T. Koketsu, T. Yamamoto, T. Fujimori, T. Ishibashi, A. Fukunaga, S. Sakai, K. Nitta, and S. Inazawa 7.6 Electrochemistry of Anodic Reaction in Molten Salt Containing LiOH for Lithium-Hydrogen Energy Cycle 571 Y. Sato, O. Takeda, M. Li, and M. Hoshi 7.7 Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte 577 E. Olsen, S. Rolseth, and J. Thonstad 7.8 Electrochemical Behaviour of Light Lanthanides in Molten Chlorides with Fluorides 585 Y. Shimohara, A. Nezu, M. Numakura, H. Akatsuka, and H. Matsuura 7.9 Using Molten Fluoride Melts for Silicon Electrorefining 597 P. Taxil, L. Massot, A.-L. Bieber, M. Gibilaro, L. Cassayre, and P. Chamelot Index 605
List of Contributors xxiii Foreword xxix Preface xxxi 1 ALUMINIUM ELECTROLYSIS 1 1.1 Formation of CO2 and CO on Carbon Anodes in Molten Salts 3 J. Thonstad and E. Sandnes 1.2 Interaction of Carbon with Molten Salts 9 Derek Fray 1.3 Anode Processes on Carbon in Chloride Melts with Dissolved Oxides 17 E. Sandnes, G. M. Haarberg, A. M. Martinez, K. S. Osen and R. Tunold 1.4 Aluminium Electrolysis with Inert Anodes and Wettable Cathodes and with Low Energy Consumption 27 Ioan Galasiu and Rodica Galasiu 1.5 Influence of the Sulfur Content in the Carbon Anodes in Aluminum Electrolysis - a Laboratory Study 39 S. Pietrzyk and J. Thonstad 1.6 Aluminum Electrolysis in an Inert Anode Cell 53 O. Tkacheva, J. Spangenberger, B. Davis, and J. Hryn 1.7 Effect of Phosphorus Impurities on the Current Efficiency for Aluminium Deposition from Cryolite-Alumina Melts in a Laboratory Cell 71 R. Meirbekova, G. Sævarsdottir, J. P. Armoo, and G. M. Haarberg 1.8 Influence of LOI on Alumina Dissolution in Molten Aluminum Electrolyte 77 Y. Yang, B. Gao, X. Hu, Z. Wang, and Z. Shi 1.9 The Electrolytic Production of Al-Cu-Li Master Alloy by Molten Salts Electrolysis 85 B. Gao, S. Wang, J. Qu, Z. Shi, X. Hu, and Z. Wang 1.10 Transference Numbers in Na(K) Cryolite-Based Systems 95 J. Hýve, P. Fellner, and J. Thonstad 1.11 125 years of the Hall Héroult Process - What Made It a Success? 103 O.-A. Lorentsen 2 NEW PROCESSES FOR ELECTROWINNING 113 2.1 Ionic Conduction of Oxygen and Calciothermic Reduction in Molten CaO-CaCl2 115 R. O. Suzuki, D. Yamada, S. Osaki, R. F. Descallar-Arriesgado, and T. Kikuchi 2.2 Effects of Temperature and Boron Concentration of a Boron-Doped Diamond (BDD) Electrode on NF3 Current Efficiency, and Stability of BDD Electrode in Molten NH4F
2HF 123 A. Tasaka, Y. Iida, T. Shiono, M. Uno, Y. Nishiki, T. Furuta, M. Saito, and M. Inaba 2.3 Nanoparticle Size Control Using a Rotating Disk Anode for Plasma-Induced Cathodic Discharge Electrolysis 133 M. Tokushige, T. Nishikiori, and Y. Ito 2.4 Cathodic Phenomena in Li Electrolysis in LiCl-KCl Melt 143 T. Takenaka, T. Morishige, and M. Umehara 3 MODELING AND THERMODYNAMICS 149 3.1 Ionic Conductivity and Molecular Structure of a Molten xZnBr2-(1
x)ABr (A = Li, Na, K) System 151 T. Ohkubo, T. Tahara, K. Takahashi, and Y. Iwadate 3.2 Molten Salts: from First Principles to Material Properties 159 M. Salanne, P. A. Madden, and C. Simon 3.3 Different Phases of Fluorido-Tantalates 163 M. Boca, B. Kubýková, F. imko, M. Gembicky, J. Moncol, and K. Jomová 3.4 Molecular Dynamics Simulation of SiO2 and SiO2-CaO Mixtures 171 A. Jacob, A. Gray-Weale, and P. J. Masset 3.5 Thermodynamic Investigation of the BaF2-LiF-NdF3 System 181 M. Berkani and M. Gaune-Escard 3.6 The Stable Complex Species in Melts of Alkali Metal Halides: Quantum-Chemical Approach 193 V. G. Kremenetsky, O. V. Kremenetskaya, and S. A. Kuznetsov 3.7 Molecular and Ionic Species in Vapor over Molten Ytterbium Bromides 203 M. F. Butman, D. N. Sergeev, V. B. Motalov, L. S. Kudin, L. Rycerz,and M. Gaune-Escard 3.8 Lithium Hydride Solubility in Molten Chlorides 213 P. J. Masset 4 HIGH-TEMPERATURE EXPERIMENTAL TECHNIQUES 219 4.1 In Situ Experimental Approach of Speciation in Molten Fluorides: A Combination of NMR, EXAFS, and Molecular Dynamics 221 C. Bessada, O. Pauvert, L. Maksoud, D. Zanghi, V. Sarou-Kanian, M. Gobet, A. L. Rollet, A. Rakhmatullin, M. Salanne, C. Simon, D. Thiaudiere, and H. Matsuura 4.2 NMR Study of Melts in the System Na3AlF6-Al2O3-AlPO4 229 A. Rakhmatullin, M. Keppert, G. M. Haarberg, F. imko, and C. Bessada 4.3 Structure and Dynamics of Alkali and Alkaline Earth Molten Fluorides by High-Temperature NMR and Molecular Dynamics 235 G. Moussaed, V. Sarou-Kanian, M. Gobet, M. Salanne, C. Simon, A.-L. Rollet and C. Bessada 4.4 Speciation of Niobium in Chloride Melts: An Electronic Absorption Spectroscopic Study 243 I. B. Polovov, N. P. Brevnova, V. A. Volkovich, M. V. Chernyshov, B. D. Vasin, and O. I. Rebrin 4.5 Electrode Processes in Vanadium-Containing Chloride Melts 257 I. B. Polovov, M. E. Tray, M. V. Chernyshov, V. A. Volkovich, B. D. Vasin, and O. I. Rebrin 4.6 Electrodeposition of Lead from Chloride Melts 283 G. M. Haarberg, L.-E. Owe, B. Qin, J. Wang, and R. Tunold 4.7 Electrodeposition of Ti from K2TiF6 in NaCl-KCl-NaF Melts 287 C.A.C. Sequeira 4.8 Effect of Electrolysis Parameters on the Coating Composition and Properties during Electrodeposition of Tungsten Carbides and Zirconium Diborides 295 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.9 Galvanic Coatings of Molybdenum and Tungsten Carbides from Oxide Melts: Electrodeposition and Initial Stages of Nucleation 303 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.10 Electrolytic Production of Matrix Coated Fibres for Titanium Matrix Composites 319 J. G. Gussone and J. M. Hausmann 4.11 Electrochemical Synthesis of Double Molybdenum Carbides 329 V.S. Dolmatov, S.A. Kuznetsov, E.V. Rebrov, and J.C. Schouten 5 ELECTROCHEMISTRY IN IONIC LIQUIDS 339 5.1 Electrodeposition of Aluminium from Ionic Liquids 341 O.B. Babushkina, E.O. Lomako, J. Wehr, and O. Rohr 5.2 Electrolytic Synthesis of (CF3)3N from a Room Temperature Molten Salt of (CH3)3N
mHF with BDD Electrode 351 A. Tasaka, K. Ikeda, N. Osawa, M. Saito, M. Uno, Y. Nishki, T. Furuta, and M. Inaba 5.3 Electrodeposition of Reactive Elements from Ionic Liquids 359 A. Bund, A. Ispas, and S. Ivanov 5.4 Electrodeposition of Magnesium in Ionic Liquid at 150-200 C B. Gao, T. Nohira, R. Hagiwara, and Z. Wang 5.5 Room-Temperature Ionic Liquid-Based SEM/EDX Techniques for Biological Specimens and in situ Electrode Reaction Observation 373 T. Tsuda, E. Mochizuki, S. Kishida, N. Nemoto, Y. Ishigaki, and S. Kuwabata 6 NUCLEAR ENERGY 1 6.1 New Routes for the Production of Reactor Grade Zirconium 391 Y. Xiao, A. van Sandwijk, Y. Yang, and V. Laging 6.2 NMR and EXAFS Investigations of Lanthanum Fluoride Solubility in Molten LiF-ZrF4-LaF3 Mixture: Application in Molten Salts Reactor 403 L. Maksoud, M. Gobet, D. Zanghi, H. Matsuura, M. Numakura, O. Pauvert, and C.Bessada 6.3 Actinides Oxidative Back-Extraction from Liquid Aluminium, in Molten Chloride Media 411 E. Mendes, O. Conocar, A. Laplace, N. Douyère, J. Lacquement, and M. Miguirditchian 6.4 Formation of Uranium Fluoride Complex by Addition of Fluoride Ion to Molten NaCl-CsCl Melts 421 A. Uehara, O. Shirai, T. Fujii, T. Nagai, N. Sato, and H. Yamana 6.5 Corrosion of Austenitic Stainless Steels in Chloride Melts 427 A. V. Abramov, I. B. Polovov, V. A. Volkovich, and O. I. Rebrin 6.6 Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YCl3: Approaches from Fundamentals to Pyrochemical Reprocessing 449 Y. Iwadate, T. Ohkubo, T. Michii, H. Matsuura, A. Kajinami, K. Takase, N. Ohtori, N. Umesaki, R. Fujita, K. Mizuguchi, H. Kofuji, M. Myochin, M. Misawa, T. Fukunaga, and K. Itoh 6.7 Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic Fluorides 459 M. Numakura, N. Sato, C. Bessada, A. Nezu, H. Akatsuka, and H. Matsuura 6.8 Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts 467 M. Straka , F. Lis
y, and L. Szatmáry 6.9 Quantitative Analysis of Lanthanides in Molten Chloride by Absorption Spectrophotometry 475 T. Uda, T. Fujii, K. Fukasawa, A. Uehara, K. Kinoshita, T. Koyama and H. Yamana 6.10 Formation of Rare Earth Phosphates in NaCl-2CsCl-Based Melts 481 V. A. Volkovich, A. B. Ivanov, S. M. Yakimov, I. B. Polovov, B. D. Vasin, A. V. Chukin, A. K. Shtolts, and T. R. Griffiths 6.11 A Novel Method for Trapping and Studying Volatile Molybdenum(V) in Alkali Chloride Melts: Implications for Treating Spent Nuclear Fuel 489 V. A. Volkovich, I. B. Polovov, R. V. Kamalov, B. D. Vasin, and T. R. Griffiths 6.12 Electrochemical Measurement of Diffusion Coefficient of U in Liquid Cd 499 T. Murakami, M. Kurata, Y. Sakamura, T. Koyama, N. Akiyama, S. Kitawaki, A. Nakayoshi, and M. Fukushima 6.13 Reduction of Uranyl(VI) Species in Alkali Chloride Melts 507 V. A. Volkovich, D. E. Aleksandrov, D. S. Maltsev, B. D. Vasin, I. B. Polovov, and T. R. Griffiths 7 ENERGY TECHNOLOGY 521 7.1 Molten Salt Electrochemical Processes Directed Toward a Low Carbon Society 523 Yasuhiko Ito 7.2 Theoretical and Experimental Approach to Improve the Li2CO3-K2CO3 Eutectic Properties in MCFC Devices 535 V. Lair, V. Albin, A. Ringuedé, and M. Cassir 7.3 Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce0.9Gd0.1O1.95) for Hybrid Electrolyte 543 M. Mizuhata, T. Ohashi, and S. Deki 7.4 Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications 551 T. Bauer, D. Laing, and R. Tamme 7.5 Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to Middle Temperatures 563 R. Hagiwara, T. Nohira, K. Numata, T. Koketsu, T. Yamamoto, T. Fujimori, T. Ishibashi, A. Fukunaga, S. Sakai, K. Nitta, and S. Inazawa 7.6 Electrochemistry of Anodic Reaction in Molten Salt Containing LiOH for Lithium-Hydrogen Energy Cycle 571 Y. Sato, O. Takeda, M. Li, and M. Hoshi 7.7 Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte 577 E. Olsen, S. Rolseth, and J. Thonstad 7.8 Electrochemical Behaviour of Light Lanthanides in Molten Chlorides with Fluorides 585 Y. Shimohara, A. Nezu, M. Numakura, H. Akatsuka, and H. Matsuura 7.9 Using Molten Fluoride Melts for Silicon Electrorefining 597 P. Taxil, L. Massot, A.-L. Bieber, M. Gibilaro, L. Cassayre, and P. Chamelot Index 605
2HF 123 A. Tasaka, Y. Iida, T. Shiono, M. Uno, Y. Nishiki, T. Furuta, M. Saito, and M. Inaba 2.3 Nanoparticle Size Control Using a Rotating Disk Anode for Plasma-Induced Cathodic Discharge Electrolysis 133 M. Tokushige, T. Nishikiori, and Y. Ito 2.4 Cathodic Phenomena in Li Electrolysis in LiCl-KCl Melt 143 T. Takenaka, T. Morishige, and M. Umehara 3 MODELING AND THERMODYNAMICS 149 3.1 Ionic Conductivity and Molecular Structure of a Molten xZnBr2-(1
x)ABr (A = Li, Na, K) System 151 T. Ohkubo, T. Tahara, K. Takahashi, and Y. Iwadate 3.2 Molten Salts: from First Principles to Material Properties 159 M. Salanne, P. A. Madden, and C. Simon 3.3 Different Phases of Fluorido-Tantalates 163 M. Boca, B. Kubýková, F. imko, M. Gembicky, J. Moncol, and K. Jomová 3.4 Molecular Dynamics Simulation of SiO2 and SiO2-CaO Mixtures 171 A. Jacob, A. Gray-Weale, and P. J. Masset 3.5 Thermodynamic Investigation of the BaF2-LiF-NdF3 System 181 M. Berkani and M. Gaune-Escard 3.6 The Stable Complex Species in Melts of Alkali Metal Halides: Quantum-Chemical Approach 193 V. G. Kremenetsky, O. V. Kremenetskaya, and S. A. Kuznetsov 3.7 Molecular and Ionic Species in Vapor over Molten Ytterbium Bromides 203 M. F. Butman, D. N. Sergeev, V. B. Motalov, L. S. Kudin, L. Rycerz,and M. Gaune-Escard 3.8 Lithium Hydride Solubility in Molten Chlorides 213 P. J. Masset 4 HIGH-TEMPERATURE EXPERIMENTAL TECHNIQUES 219 4.1 In Situ Experimental Approach of Speciation in Molten Fluorides: A Combination of NMR, EXAFS, and Molecular Dynamics 221 C. Bessada, O. Pauvert, L. Maksoud, D. Zanghi, V. Sarou-Kanian, M. Gobet, A. L. Rollet, A. Rakhmatullin, M. Salanne, C. Simon, D. Thiaudiere, and H. Matsuura 4.2 NMR Study of Melts in the System Na3AlF6-Al2O3-AlPO4 229 A. Rakhmatullin, M. Keppert, G. M. Haarberg, F. imko, and C. Bessada 4.3 Structure and Dynamics of Alkali and Alkaline Earth Molten Fluorides by High-Temperature NMR and Molecular Dynamics 235 G. Moussaed, V. Sarou-Kanian, M. Gobet, M. Salanne, C. Simon, A.-L. Rollet and C. Bessada 4.4 Speciation of Niobium in Chloride Melts: An Electronic Absorption Spectroscopic Study 243 I. B. Polovov, N. P. Brevnova, V. A. Volkovich, M. V. Chernyshov, B. D. Vasin, and O. I. Rebrin 4.5 Electrode Processes in Vanadium-Containing Chloride Melts 257 I. B. Polovov, M. E. Tray, M. V. Chernyshov, V. A. Volkovich, B. D. Vasin, and O. I. Rebrin 4.6 Electrodeposition of Lead from Chloride Melts 283 G. M. Haarberg, L.-E. Owe, B. Qin, J. Wang, and R. Tunold 4.7 Electrodeposition of Ti from K2TiF6 in NaCl-KCl-NaF Melts 287 C.A.C. Sequeira 4.8 Effect of Electrolysis Parameters on the Coating Composition and Properties during Electrodeposition of Tungsten Carbides and Zirconium Diborides 295 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.9 Galvanic Coatings of Molybdenum and Tungsten Carbides from Oxide Melts: Electrodeposition and Initial Stages of Nucleation 303 V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard 4.10 Electrolytic Production of Matrix Coated Fibres for Titanium Matrix Composites 319 J. G. Gussone and J. M. Hausmann 4.11 Electrochemical Synthesis of Double Molybdenum Carbides 329 V.S. Dolmatov, S.A. Kuznetsov, E.V. Rebrov, and J.C. Schouten 5 ELECTROCHEMISTRY IN IONIC LIQUIDS 339 5.1 Electrodeposition of Aluminium from Ionic Liquids 341 O.B. Babushkina, E.O. Lomako, J. Wehr, and O. Rohr 5.2 Electrolytic Synthesis of (CF3)3N from a Room Temperature Molten Salt of (CH3)3N
mHF with BDD Electrode 351 A. Tasaka, K. Ikeda, N. Osawa, M. Saito, M. Uno, Y. Nishki, T. Furuta, and M. Inaba 5.3 Electrodeposition of Reactive Elements from Ionic Liquids 359 A. Bund, A. Ispas, and S. Ivanov 5.4 Electrodeposition of Magnesium in Ionic Liquid at 150-200 C B. Gao, T. Nohira, R. Hagiwara, and Z. Wang 5.5 Room-Temperature Ionic Liquid-Based SEM/EDX Techniques for Biological Specimens and in situ Electrode Reaction Observation 373 T. Tsuda, E. Mochizuki, S. Kishida, N. Nemoto, Y. Ishigaki, and S. Kuwabata 6 NUCLEAR ENERGY 1 6.1 New Routes for the Production of Reactor Grade Zirconium 391 Y. Xiao, A. van Sandwijk, Y. Yang, and V. Laging 6.2 NMR and EXAFS Investigations of Lanthanum Fluoride Solubility in Molten LiF-ZrF4-LaF3 Mixture: Application in Molten Salts Reactor 403 L. Maksoud, M. Gobet, D. Zanghi, H. Matsuura, M. Numakura, O. Pauvert, and C.Bessada 6.3 Actinides Oxidative Back-Extraction from Liquid Aluminium, in Molten Chloride Media 411 E. Mendes, O. Conocar, A. Laplace, N. Douyère, J. Lacquement, and M. Miguirditchian 6.4 Formation of Uranium Fluoride Complex by Addition of Fluoride Ion to Molten NaCl-CsCl Melts 421 A. Uehara, O. Shirai, T. Fujii, T. Nagai, N. Sato, and H. Yamana 6.5 Corrosion of Austenitic Stainless Steels in Chloride Melts 427 A. V. Abramov, I. B. Polovov, V. A. Volkovich, and O. I. Rebrin 6.6 Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YCl3: Approaches from Fundamentals to Pyrochemical Reprocessing 449 Y. Iwadate, T. Ohkubo, T. Michii, H. Matsuura, A. Kajinami, K. Takase, N. Ohtori, N. Umesaki, R. Fujita, K. Mizuguchi, H. Kofuji, M. Myochin, M. Misawa, T. Fukunaga, and K. Itoh 6.7 Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic Fluorides 459 M. Numakura, N. Sato, C. Bessada, A. Nezu, H. Akatsuka, and H. Matsuura 6.8 Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts 467 M. Straka , F. Lis
y, and L. Szatmáry 6.9 Quantitative Analysis of Lanthanides in Molten Chloride by Absorption Spectrophotometry 475 T. Uda, T. Fujii, K. Fukasawa, A. Uehara, K. Kinoshita, T. Koyama and H. Yamana 6.10 Formation of Rare Earth Phosphates in NaCl-2CsCl-Based Melts 481 V. A. Volkovich, A. B. Ivanov, S. M. Yakimov, I. B. Polovov, B. D. Vasin, A. V. Chukin, A. K. Shtolts, and T. R. Griffiths 6.11 A Novel Method for Trapping and Studying Volatile Molybdenum(V) in Alkali Chloride Melts: Implications for Treating Spent Nuclear Fuel 489 V. A. Volkovich, I. B. Polovov, R. V. Kamalov, B. D. Vasin, and T. R. Griffiths 6.12 Electrochemical Measurement of Diffusion Coefficient of U in Liquid Cd 499 T. Murakami, M. Kurata, Y. Sakamura, T. Koyama, N. Akiyama, S. Kitawaki, A. Nakayoshi, and M. Fukushima 6.13 Reduction of Uranyl(VI) Species in Alkali Chloride Melts 507 V. A. Volkovich, D. E. Aleksandrov, D. S. Maltsev, B. D. Vasin, I. B. Polovov, and T. R. Griffiths 7 ENERGY TECHNOLOGY 521 7.1 Molten Salt Electrochemical Processes Directed Toward a Low Carbon Society 523 Yasuhiko Ito 7.2 Theoretical and Experimental Approach to Improve the Li2CO3-K2CO3 Eutectic Properties in MCFC Devices 535 V. Lair, V. Albin, A. Ringuedé, and M. Cassir 7.3 Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce0.9Gd0.1O1.95) for Hybrid Electrolyte 543 M. Mizuhata, T. Ohashi, and S. Deki 7.4 Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications 551 T. Bauer, D. Laing, and R. Tamme 7.5 Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to Middle Temperatures 563 R. Hagiwara, T. Nohira, K. Numata, T. Koketsu, T. Yamamoto, T. Fujimori, T. Ishibashi, A. Fukunaga, S. Sakai, K. Nitta, and S. Inazawa 7.6 Electrochemistry of Anodic Reaction in Molten Salt Containing LiOH for Lithium-Hydrogen Energy Cycle 571 Y. Sato, O. Takeda, M. Li, and M. Hoshi 7.7 Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte 577 E. Olsen, S. Rolseth, and J. Thonstad 7.8 Electrochemical Behaviour of Light Lanthanides in Molten Chlorides with Fluorides 585 Y. Shimohara, A. Nezu, M. Numakura, H. Akatsuka, and H. Matsuura 7.9 Using Molten Fluoride Melts for Silicon Electrorefining 597 P. Taxil, L. Massot, A.-L. Bieber, M. Gibilaro, L. Cassayre, and P. Chamelot Index 605