44,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
22 °P sammeln
  • Broschiertes Buch

Over the last few years, Probabilistic Roadmaps (PRMs) have emerged as a powerful approach for solving complex motion planning problems in robotics. Even beyond robotics, PRMs can be used to predict motions of biological macro-molecules such as proteins and synthesize motions for digital actors. Current PRM-based research focuses on challenges that arise as PRMs are being applied to motion planning problems in various scenarios. In response to some of those challenges, the following four contributions are being made in this thesis: (1) a dynamic checker for PRMs that exactly determines whether…mehr

Produktbeschreibung
Over the last few years, Probabilistic Roadmaps
(PRMs) have emerged as a powerful approach for
solving complex motion planning problems in robotics.
Even beyond robotics, PRMs can be used to predict
motions of biological macro-molecules such as
proteins and synthesize motions for digital actors.
Current PRM-based research focuses on challenges that
arise as PRMs are being applied to motion planning
problems in various scenarios. In response to some of
those challenges, the following four contributions
are being made in this thesis: (1) a dynamic checker
for PRMs that exactly determines whether a path lies
in free space, (2) a sampling strategy, called
"small-step retraction" (SSR), that allows a PRM
planner to efficiently construct roadmaps in free
spaces with narrow passages, (3) an efficient
multi-goal PRM planner, and (4) a PRM planner that
can compute the motions and (re-)grasp operations of
a two-arm system in order to tie self-knots of
deformable linear objects (DLOs), as well as knots
around simple static objects.
Autorenporträt
Dr. Mitul Saha received his PhD from the Stanford Artificial
Intelligence Lab in 2006. Prior to that, he obtained his BS from
the Indian Institute of Technology (IIT), Kanpur, in 2001.