
Métodos iterativos para a solução da equação de Poisson
Problema de Dirichlet e Neumann
Versandkostenfrei!
Versandfertig in 6-10 Tagen
23,99 €
inkl. MwSt.
PAYBACK Punkte
12 °P sammeln!
Para aproximar a solução da equação de Poisson através do método de diferenças finitas precisamos resolver um sistema linear do tipo Ax=b, que pode ser resolvido através de um método iterativo. Para analisar a convergência de tais métodos podemos estudar os autovalores do sistema obtido, onde desejamos que o módulo do maior autovalor seja menor ou igual a um. Realizou-se a análise através do estudo do maior autovalor em módulo, para o problema de Neumann e Dirichlet (uni e bidimensional) em malhas uniforme. Para o problema de Neumann temos que ele é condicionalmente convergente...
Para aproximar a solução da equação de Poisson através do método de diferenças finitas precisamos resolver um sistema linear do tipo Ax=b, que pode ser resolvido através de um método iterativo. Para analisar a convergência de tais métodos podemos estudar os autovalores do sistema obtido, onde desejamos que o módulo do maior autovalor seja menor ou igual a um. Realizou-se a análise através do estudo do maior autovalor em módulo, para o problema de Neumann e Dirichlet (uni e bidimensional) em malhas uniforme. Para o problema de Neumann temos que ele é condicionalmente convergente pois o maior autovalor é 1 e este é único. Para este problema obtém-se condições para que o mesmo tenha solução baseado na integral do termo fonte.