35,90 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

Das Spiking Neural Network (SNN) spielt eine wichtige Rolle bei Klassifizierungsproblemen. Obwohl es viele SNN-Modelle gibt, wird das Evolving Spiking Neural Network (ESNN) in vielen aktuellen Forschungsarbeiten verwendet. Evolutionäre Algorithmen, vor allem die differentielle Evolution (DE), wurden zur Verbesserung des ESNN-Algorithmus eingesetzt. Viele reale Optimierungsprobleme beinhalten jedoch mehrere widersprüchliche Ziele. In diesem Buch wurden Harmony Search (HS) und der memetische Ansatz verwendet, um die Leistung von MOO mit ESNN zu verbessern. Folglich wurde Memetic Harmony Search…mehr

Produktbeschreibung
Das Spiking Neural Network (SNN) spielt eine wichtige Rolle bei Klassifizierungsproblemen. Obwohl es viele SNN-Modelle gibt, wird das Evolving Spiking Neural Network (ESNN) in vielen aktuellen Forschungsarbeiten verwendet. Evolutionäre Algorithmen, vor allem die differentielle Evolution (DE), wurden zur Verbesserung des ESNN-Algorithmus eingesetzt. Viele reale Optimierungsprobleme beinhalten jedoch mehrere widersprüchliche Ziele. In diesem Buch wurden Harmony Search (HS) und der memetische Ansatz verwendet, um die Leistung von MOO mit ESNN zu verbessern. Folglich wurde Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) angewendet, um die ESNN-Struktur und die Genauigkeitsraten zu verbessern. Standarddatensätze aus dem maschinellen Lernen der UCI werden für die Bewertung der Leistung dieses verbesserten hybriden Mehrzielmodells verwendet. Die experimentellen Ergebnisse haben gezeigt, dass das Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) bessere Ergebnisse in Bezug auf Genauigkeit und Netzwerkstruktur liefert.
Autorenporträt
Er erwarb einen MSc in Informatik an der UST und einen PhD in Informatik (Künstliche Intelligenz) an der University Teknologi Malaysia (UTM). Er interessiert sich für Kognitionswissenschaft, Gehirnmodellierung, neuronale Netze und Optimierungsmethoden. Sein Forschungsinteresse umfasst Datenwissenschaft, Big Data, Deep Learning, parallele Programmierung.