Das Spiking Neural Network (SNN) spielt eine wichtige Rolle bei Klassifizierungsproblemen. Obwohl es viele SNN-Modelle gibt, wird das Evolving Spiking Neural Network (ESNN) in vielen aktuellen Forschungsarbeiten verwendet. Evolutionäre Algorithmen, vor allem die differentielle Evolution (DE), wurden zur Verbesserung des ESNN-Algorithmus eingesetzt. Viele reale Optimierungsprobleme beinhalten jedoch mehrere widersprüchliche Ziele. In diesem Buch wurden Harmony Search (HS) und der memetische Ansatz verwendet, um die Leistung von MOO mit ESNN zu verbessern. Folglich wurde Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) angewendet, um die ESNN-Struktur und die Genauigkeitsraten zu verbessern. Standarddatensätze aus dem maschinellen Lernen der UCI werden für die Bewertung der Leistung dieses verbesserten hybriden Mehrzielmodells verwendet. Die experimentellen Ergebnisse haben gezeigt, dass das Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) bessere Ergebnisse in Bezug auf Genauigkeit und Netzwerkstruktur liefert.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno