Advanced communication scenarios demand the development of new systemswhere antenna theory, channel propagation and communication models are seen from a common perspective as a way to understand and optimize the system as a whole. In this context, a comprehensive multiantenna formulation for multiple-input multiple-output systems is presented with a special emphasis on the connection of the electromagnetic and communication principles.Starting from the capacity for amultiantenna system, the book reviews radiation, propagation, and communicationmechanisms, paying particular attention to the…mehr
Advanced communication scenarios demand the development of new systemswhere antenna theory, channel propagation and communication models are seen from a common perspective as a way to understand and optimize the system as a whole. In this context, a comprehensive multiantenna formulation for multiple-input multiple-output systems is presented with a special emphasis on the connection of the electromagnetic and communication principles.Starting from the capacity for amultiantenna system, the book reviews radiation, propagation, and communicationmechanisms, paying particular attention to the vectorial, directional, and timefrequency characteristics of the wireless communication equation for low- and high-scattering environments. Based on the previous concepts, different space-time methods for diversity and multiplexing applications are discussed, multiantenna modeling is studied, and specific tools are introduced to analyze the antenna coupling mechanisms and formulate appropriate decorrelation techniques.Miniaturization techniques for closely spaced antennas are studied, and its fundamental limits and optimization strategies are reviewed. Finally, different practical multiantenna topologies for new communication applications are presented, and its main parameters discussed.A relevant feature is a collection of synthesis exercises that review the main topics of the book and introduces state-of-the art system architectures and parameters, facilitating its use either as a text book or as a support tool for multiantenna systems design.Table of Contents: Principles of Multiantenna Communication Systems / The Radio Channel for MIMO Communication Systems / Coding Theory for MIMO Communication Systems / Antenna Modeling for MIMO Communication Systems / Design of MPAs for MIMO Communication Systems / Design Examples and Performance Analysis of Different MPAs / References / List of Acronyms / List of Symbols / Operators and Mathematical Symbols
Franco De Flaviis was born in Teramo, Italy, in 1963. He received his Italian degree (laurea) in electronics engineering from the University of Ancona (Italy) in 1990. In 1991, he was an engineer employee at Alcatel as researcher specialized in the area of microwave mixer design. In 1992, he was a visiting researcher at the University of California at Los Angeles (UCLA) working on low intermodulation mixers. He received his M.S. and Ph.D. degrees in electrical engineering from the Department of Electrical Engineering at UCLA in 1994 and 1997, respectively. Currently, he is an associate professor at the Department of Electrical and Computer Engineering at the University of California at Irvine. Dr. De Flaviis' research interests are computer-aided electromagnetics for high-speed digital circuits and antennas and microelectromechanical systems for RF applications fabricated on unconventional substrates such as printed circuit board and microwave laminates. Lluís Jofre was born in Mataró,Spain, in 1956. He received his M.Sc. (Ing) and Ph.D. (Doctor Ing.) degrees in electrical engineering from the Technical University of Catalonia (UPC), Barcelona, Spain, in 1978 and 1982, respectively. From 1981 to 1982, he joined the École Normale Supérieure d'Electricite, Paris, France, where he was involved in microwave antenna design and imaging techniques for medical and industrial applications. In 1982, he was appointed associate professor at the Communications Department of the Telecommunication Engineering School at the UPC, where he became full professor in 1989. From 1986 to 1987, he was a Visiting Fulbright Scholar at the Georgia Institute of Technology, Atlanta, working on antennas and electromagnetic imaging and visualization. From 1989 to 1994, he served as the director of the Telecommunication Engineering School (UPC), and from 1994 to 2000, as UPC vice-rector for academic planning. From 2000 to 2001, he was a visiting professor at the Electrical and Computer Engineering Department, Henry Samueli School of Engineering, University of California, working on multiantenna systems for communications and imaging. From 2002 to 2004, he served as director of the Catalan Research Foundation, and since 2003, as director of the UPC-Telefonica chair. His research interests include antennas, electromagnetic scattering and imaging, and system miniaturization for wireless and sensing industrial and bio applications. He has published more than 100 scientific and technical papers, reports, and chapters in specialized volumes. Jordi Romeu was born in Barcelona, Spain in 1962. He received the Ingeniero de Telecomunicación and Doctor Ingeniero de Telecomunicación, both from the Universitat Politècnica de Catalunya (UPC) in 1986 and 1991, respectively. In 1985, he joined the Antennalab at the Signal Theory and Communications Department, UPC. Currently, he is a full professor there, where he is engaged in research in antenna near-field measurements, antenna diagnostics, and antenna design. He was visiting scholar at the Antenna Laboratory, University of California at Los Angeles, in 1999, on a NATO Scientific Program Scholarship and in 2004 at University of California at Irvine. He holds several patents and has published 35 refereed papers in international journals and 50 conference proceedings. Dr. Romeu was the grand winner of the European IT Prize, awarded by the European Comission, for his contributions in the development of fractal antennas in 1998. Alfred Grau was born in Barcelona, Spain, in 1977. He received his telecommunications engineering degree from the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, in 2001. He received his M.S. and Ph.D. degrees in electrical engineering from the Department of Electrical and Computer Engineering at the University of California at Irvine (UCI) in 2004 and 2007, respectively. Dr. Grau's research interest are in the field of miniature and integrated antennas, multiport antenna systems, MIMO wireless communication systems, software-defined antennas, reconfigurable and adaptive antennas, channel coding techniques, and microelectromechanical systems for RF applications.
Inhaltsangabe
Principles of Multiantenna Communication Systems.- The Radio Channel for MIMO Communication Systems.- Coding Theory for MIMO Communication Systems.- Antenna Modeling for MIMO Communication Systems.- Design of MPAs for MIMO Communication Systems.- Design Examples and Performance Analysis of Different MPAs.- References.- List of Acronyms.- List of Symbols.- Operators and Mathematical Symbols.
Principles of Multiantenna Communication Systems.- The Radio Channel for MIMO Communication Systems.- Coding Theory for MIMO Communication Systems.- Antenna Modeling for MIMO Communication Systems.- Design of MPAs for MIMO Communication Systems.- Design Examples and Performance Analysis of Different MPAs.- References.- List of Acronyms.- List of Symbols.- Operators and Mathematical Symbols.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826