110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
55 °P sammeln
  • Broschiertes Buch

This book intends to assemble reviews on the progress in defining and controlling the spatiotemporal organization of key events in immune cell activation. Improved understanding of MIRR-mediated signaling has a number of potential practical applications, from the rational design of drugs and vaccines to the engineering of cells for biotechnological purposes. In Section 1, spatial organization and physiological function of the MIRR family members such as T cell receptor (TCR), B cell receptor (BCR), Fc receptors, natural killer (NK) cell receptors, and platelet glycoprotein VI (GPVI) will be…mehr

Produktbeschreibung
This book intends to assemble reviews on the progress in defining and controlling the spatiotemporal organization of key events in immune cell activation. Improved understanding of MIRR-mediated signaling has a number of potential practical applications, from the rational design of drugs and vaccines to the engineering of cells for biotechnological purposes. In Section 1, spatial organization and physiological function of the MIRR family members such as T cell receptor (TCR), B cell receptor (BCR), Fc receptors, natural killer (NK) cell receptors, and platelet glycoprotein VI (GPVI) will be reviewed. Section 2 will focus on current models of MIRR-triggering and highlight modern technologies to visualize cell-cell interaction contacts such as immunological synapse and to measure protein-protein interactions in space in real time. Potential therapeutic strategies targeting the MIRR-mediated transmembrane signal transduction will be shortly reviewed in Section 3. This book will summarize our current knowledge in this field and illustrate how control of the MIRR-triggered signaling could become a potential target of medical intervention, thus bridging basic and clinical immunology.
Immunological recognition is a central feature of the adaptive immunity of vertebrates. With the exception of agnathans, which developed an entirely distinct set of immunologically-specific molecules, all vertebrates use a recognition system based on what Achsah Keegan and I suggested in 1992 be termed multichain immune recognition receptors (MIRRs). MIRRs consist of ligand-binding molecules that are immunoglobulin supergene family members associated with signal transducers and enhancers in such a way as both insure precise ligand recognition, discrimination and ampHfication of the signal. Two of the prototypic sets of MIRRs, the T-cell and B-cell receptors, are among the most remarkable recognition molecules known. These are extraordinarily diverse molecules in which the range of ligands that can be potentially recognized prob ably exceeds the actual numbers of lymphocytes in the body. The discovery of the genetic basis of assembling these receptors and understanding how they bind to their cognate antigens are among the most stunning of scientific achievements. Yet these immensely specific binding chains (the heavy/light chain pair for immunoglobulin and the a/p chain pair for most T cells), when expressed as membrane molecules, have no obvious mechanism of signaling. For example, the iH chain cytosolic do main consists of three amino acids (lysine-valine-lysine) and the L chain is not even embedded in the membrane. Furthermore, there is no known direct mechanism to propagate information from the binding domain of the B-cell or T-cell receptors to the membrane-proximal domains of the same chains.
Autorenporträt
ALEXANDER SIGALOV, PhD, is a Research Assistant Professor in the Department of Pathology at the University of Massachusetts Medical School in Worcester, Massachusetts, USA. His main research interests include protein intrinsic disorder and oligomericity in the context of transmembrane signal transduction, the molecular mechanisms underlying immune receptor-mediated signaling and ways to control these processes and thus to modulate the immune response, as well as the development and applications of novel targets and strategies for innovative immune therapy. He discovered and investigated a very unusual and unique biophysical phenomenon, the homooligomerization of intrinsically disordered proteins, thus providing the first evidence for the existence of specific interactions between unfolded protein molecules. In the field of immunology, he unraveled a long-standing mystery of transmembrane signaling and immune cell activation triggered by multichain immune recognition receptors. Later, he developed a novel concept of platelet inhibition and invented a novel class of platelet inhibitors. In the field of immune therapy, he proposed new therapeutic strategies for a variety of malignancies and immune disorders, including immunodeficiencies, inflammatory and autoimmune diseases, allergy and HIV. He is a member of the American Association for the Advancement of Science and the Biophysical Society, USA. Alexander Sigalov received his academic degrees (MSc in Chemistry and a PhD in Organic Chemistry) from Moscow State University, Russia.