Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Multidimensional Filter Banks and Wavelets: Reserach Developments andApplications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments andApplications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Theory.- Gröbner Bases and Multidimensional FIR Multirate Systems.- Reconstruction and Decomposition Algorithms for Biorthogonal Multiwavelets.- Zero-Phase Filter Bank and Wavelet Code r Matrices: Properties, Triangular Decompositions, and a Fast Algorithm.- On Translation Invariant Subspaces and Critically Sampled Wavelet Transforms.- Applications.- Low Bit-Rate Design Considerations for Wavelet-Based Image Coding.- Multiresolution Vector Quantization for Video Coding.- Multiscale, Statistical Anomaly Detection Analysis and Algorithms for Linearized Inverse Scattering Problems.- On the Scalability of 2-D Discrete Wavelet Transform Algorithms.- Short Paper.- A Fast Algorithm to Map Functions Forward.- Contributing Authors.
Theory.- Gröbner Bases and Multidimensional FIR Multirate Systems.- Reconstruction and Decomposition Algorithms for Biorthogonal Multiwavelets.- Zero-Phase Filter Bank and Wavelet Code r Matrices: Properties, Triangular Decompositions, and a Fast Algorithm.- On Translation Invariant Subspaces and Critically Sampled Wavelet Transforms.- Applications.- Low Bit-Rate Design Considerations for Wavelet-Based Image Coding.- Multiresolution Vector Quantization for Video Coding.- Multiscale, Statistical Anomaly Detection Analysis and Algorithms for Linearized Inverse Scattering Problems.- On the Scalability of 2-D Discrete Wavelet Transform Algorithms.- Short Paper.- A Fast Algorithm to Map Functions Forward.- Contributing Authors.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497