Modern semiconductor devices have reached high current and voltage levels, and their power-handling limits can be extended if they are used in multilevel converter configurations. To create high-performance and reliable control designs, however, engineers need in-depth understanding of the characteristics and operation of these topologies. Multilevel Converters for Industrial Applications presents a thorough and comprehensive analysis of multilevel converters with a common DC voltage source. The book offers a novel perspective to help readers understand the principles of the operation of…mehr
Modern semiconductor devices have reached high current and voltage levels, and their power-handling limits can be extended if they are used in multilevel converter configurations. To create high-performance and reliable control designs, however, engineers need in-depth understanding of the characteristics and operation of these topologies. Multilevel Converters for Industrial Applications presents a thorough and comprehensive analysis of multilevel converters with a common DC voltage source. The book offers a novel perspective to help readers understand the principles of the operation of voltage-source multilevel converters as power processors, and their capabilities and limitations. The book begins with an overview of medium-voltage power converters and their applications. It then analyzes the topological characteristics of the diode-clamped multilevel converter, the flying capacitor multilevel converter, and the asymmetric cascaded multilevel converter. For each topology, the authors highlight particular control issues and design trade-offs. They also develop relevant modulation and control strategies. Numerous graphical representations aid in the analysis of the topologies and are useful for beginning the analysis of new multilevel converter topologies. The last two chapters of the book explore two case studies that analyze the behavior of the cascade asymmetric multilevel converter as a distribution static compensator and shunt active power filter, and the behavior of the diode-clamped topology configured as a back-to-back converter. These case studies demonstrate how to address the associated control problems with advanced control and modulation schemes. Examining recent advances, this book provides deep insight on the design of high-power multilevel converters and their applications. It is a valuable reference for anyone interested in medium-voltage power conversion, which is increasingly being used in industry and in renewable energy and distributed generation systems to improve efficiency and operation flexibility.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Sergio Alberto González, Ph.D., is a full professor of power electronics at the National University of La Plata (UNLP), Argentina. He is also an associate professor of power electronics and motors control at the National University of Quilmes (UNQ), Argentina (since 2000). Dr. González joined the Industrial Electronics, Control and Instrumentation Laboratory (LEICI), Argentina, in 1992. His research interests have been in the field of power converters, in particular DC-DC converters, resonant converters, and multilevel converters and their application in flexible AC transmission and power quality control. Santiago Andrés Verne, Ph.D., has been with the Industrial Electronics, Control and Instrumentation Laboratory (LEICI) at the National University of La Plata (UNLP) since 2003 studying multilevel converters and drives. He is also currently a head teaching assistant in the Electrical Engineering Department at UNLP. María Inés Valla, Ph.D., is a full professor in the Electrical Engineering Department at the National University of La Plata (UNLP). She is also a member of the National Research Council of Argentina (CONICET). Dr. Valla joined the Industrial Electronics, Control and Instrumentation Laboratory (LEICI) at UNLP in 1980, and since 1998 she has been the head of the power electronics group within LEICI. Her research interests are in the field of power electronics and AC drives. Dr. Valla has been an IEEE fellow since 2010 and a member of the Buenos Aires Academy of Engineering in Argentina since 2007.
Inhaltsangabe
Introduction. Multilevel Topologies. Diode-Clamped Multilevel Converter. Flying Capacitor Multilevel Converter. Cascade Asymmetric Multilevel Converter. Case Study 1: DSTATCOM Built with a Cascade Asymmetric Multilevel Converter. Case Study 2: Medium-Voltage Motor Drive Built with DCMC. Index.
Introduction. Multilevel Topologies. Diode-Clamped Multilevel Converter. Flying Capacitor Multilevel Converter. Cascade Asymmetric Multilevel Converter. Case Study 1: DSTATCOM Built with a Cascade Asymmetric Multilevel Converter. Case Study 2: Medium-Voltage Motor Drive Built with DCMC. Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826