95,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
48 °P sammeln
  • Gebundenes Buch

Note to the interested reader to have a look at the companion to this volume Challenges for Sciences and Communication I ISBN: 978-3-031-28048-1.
This highly interdisciplinary volume brings together a carefully curated set of case studies examining complex systems with multiple time scales (MTS) across a variety of fields: materials science, epidemiology, cell physiology, mathematics, climatology, energy transition planning, ecology, economics, sociology, history, and cultural studies. The book addresses the vast diversity of interacting processes underlying the behaviour of different…mehr

Produktbeschreibung
Note to the interested reader to have a look at the companion to this volume Challenges for Sciences and Communication I ISBN: 978-3-031-28048-1.

This highly interdisciplinary volume brings together a carefully curated set of case studies examining complex systems with multiple time scales (MTS) across a variety of fields: materials science, epidemiology, cell physiology, mathematics, climatology, energy transition planning, ecology, economics, sociology, history, and cultural studies. The book addresses the vast diversity of interacting processes underlying the behaviour of different complex systems, highlighting the multiplicity of characteristic time scales that are a common feature of many and showcases a rich variety of methodologies across disciplinary boundaries.

Self-organizing, out-of-equilibrium, ever-evolving systems are ubiquitous in the natural and social world. Examples include the climate, ecosystems, living cells, epidemics, the human brain, and many socio-economic systems across history. Their dynamical behaviour poses great challenges in the pressing context of the climate crisis, since they may involve nonlinearities, feedback loops, and the emergence of spatial-temporal patterns, portrayed by resilience or instability, plasticity or rigidity; bifurcations, thresholds and tipping points; burst-in excitation or slow relaxation, and worlds of other asymptotic behaviour, hysteresis, and resistance to change.

Chapters can be read individually by the reader with special interest in such behaviours of particular complex systems or in specific disciplinary perspectives. Read together, however, the case studies, opinion pieces, and meta-studies on MTS systems presented and analysed here combine to give the reader insights that are more than the sum of the book's individual chapters, as surprising similarities become apparent in seemingly disparate and unconnected systems. MTS systems call into question naïve perceptionsof time and complexity, moving beyond conventional ways of description, analysis, understanding, modelling, numerical prediction, and prescription of the world around us.
This edited collection presents new ways of forecasting, introduces new means of control, and - perhaps as the most demanding task - it singles out a sustainable description of an MTS system under observation, offering a more nuanced interpretation of the floods of quantitative data and images made available by high- and low-frequency measurement tools in our unprecedented era of information flows.
Autorenporträt
¿Bernhelm Booß-Bavnbek is Emeritus in the Department of Science and Environment at Roskilde University in Denmark. Jens Hesselbjerg Christensen is professor in the Department of Physic, Ice, Climate and Earth; Niels Bohr Institute, University of Copenhagen Katherine Richardson is professor at the Department of Macroecology, Evolution, and Climate at Copenhagen University in Denmark. Oriol Vallès Codina is research fellow at Leeds University Business School, UK.