This book focuses on the mechanobiological principles in tissue engineering with a particular emphasis on the multiscale aspects of the translation of mechanical forces from bioreactors down to the cellular level. The book contributes to a better understanding of the design and use of bioreactors for tissue engineering and the use of mechanical loading to optimize in vitro cell culture conditions. It covers experimental and computational approaches and the combination of both to show the benefits that computational modelling can bring to experimentalists when studying in vitro cell culture…mehr
This book focuses on the mechanobiological principles in tissue engineering with a particular emphasis on the multiscale aspects of the translation of mechanical forces from bioreactors down to the cellular level. The book contributes to a better understanding of the design and use of bioreactors for tissue engineering and the use of mechanical loading to optimize in vitro cell culture conditions. It covers experimental and computational approaches and the combination of both to show the benefits that computational modelling can bring to experimentalists when studying in vitro cell culture within a scaffold. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, this work provides a novel approach to the use of engineering tools for the optimization of biological processes and its application to regenerative medicine. The volume is a valuable resource for researchers and graduate students studying mechanobiology and tissue engineering. For undergraduate students it also provides deep insight into tissue engineering and its use in the design of bioreactors. The book is supplemented with extensive references for all chapters to help the reader to progress through the study of each topic.
Damien Lacroix, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Marzia Brunelli, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Cecile Perrault, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Adrien Baldit, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Maryam Shariatzadeh, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Ana Campos Marin, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Andre Castro, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK Sara Barreto, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
Inhaltsangabe
A review of bioreactors and mechanical stimuli.- Multiscale simulation of bioreactor design and in vitro conditions.- Mechanical stimulation in a PCL additive manufacturing scaffold.- Towards a new approach to analyse quality control and morphometric variability in a scaffold.- Computational simulation of cell seeding in a tissue engineering scaffold.- Collagen gel cell encapsulation to study mechanotransduction.- Collagen gel cell encapsulation to study the effect of fluid flow on mechanotransduction.- Computational modeling of collagen hydrogel.- Mechanical load transfer at the cellular level.- Quantification of CSK mechanics and deformation in relation to cellular functioning.- The future of tissue engineering design for bioreactor stimulation.
A review of bioreactors and mechanical stimuli.- Multiscale simulation of bioreactor design and in vitro conditions.- Mechanical stimulation in a PCL additive manufacturing scaffold.- Towards a new approach to analyse quality control and morphometric variability in a scaffold.- Computational simulation of cell seeding in a tissue engineering scaffold.- Collagen gel cell encapsulation to study mechanotransduction.- Collagen gel cell encapsulation to study the effect of fluid flow on mechanotransduction.- Computational modeling of collagen hydrogel.- Mechanical load transfer at the cellular level.- Quantification of CSK mechanics and deformation in relation to cellular functioning.- The future of tissue engineering design for bioreactor stimulation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497