Tadeusz Burczynski (Silesian University of Technology), Maciej Pietrzyk (AGH - University of Science & Technology), Waclaw Kus
Multiscale Modelling and Optimisation of Materials and Structures
186,99 €
inkl. MwSt.
Versandkostenfrei*
Liefertermin unbestimmt
Melden Sie sich
hier
hier
für den Produktalarm an, um über die Verfügbarkeit des Produkts informiert zu werden.
oder sofort lesen als eBook
93 °P sammeln
Tadeusz Burczynski (Silesian University of Technology), Maciej Pietrzyk (AGH - University of Science & Technology), Waclaw Kus
Multiscale Modelling and Optimisation of Materials and Structures
- Gebundenes Buch
Addresses the topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods. This book presents an area of research that enables the design of materials and structures with better quality, strength and performance parameters. It describes micro and nano scale models along with case studies.
Andere Kunden interessierten sich auch für
- Farid Al-BenderAir Bearings178,99 €
- Robert Bond Randall (Australia University of New South Wales)Vibration-based Condition Moni173,99 €
- Anders Brandt (University of Southern Denmark)Noise and Vibration Analysis115,99 €
- Wahidul K. Biswas (Curtin University, Perth, Australia)Engineering for Sustainable Development119,99 €
- Ulan Dakeev (Sam Houston State University, Texas, USA)Creo Parametric Modeling with Augmented Reality91,99 €
- Maan H. Jawad (Missouri Nooter Corp.)Analysis of Asme Boiler, Pressure Vessel, and Nuclear Components in the Creep Range127,99 €
- Faye C. McQuiston (Oklahoma State University)Heating, Ventilating, and Air Conditioning116,99 €
-
-
-
Addresses the topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods. This book presents an area of research that enables the design of materials and structures with better quality, strength and performance parameters. It describes micro and nano scale models along with case studies.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119975920
- 1. Auflage
- Seitenzahl: 320
- Erscheinungstermin: 7. Juli 2022
- Englisch
- Abmessung: 254mm x 178mm x 19mm
- Gewicht: 776g
- ISBN-13: 9781119975922
- ISBN-10: 1119975921
- Artikelnr.: 41564859
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119975920
- 1. Auflage
- Seitenzahl: 320
- Erscheinungstermin: 7. Juli 2022
- Englisch
- Abmessung: 254mm x 178mm x 19mm
- Gewicht: 776g
- ISBN-13: 9781119975922
- ISBN-10: 1119975921
- Artikelnr.: 41564859
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Preface ix
Biography xi
1 Introduction to Multiscale Modelling and Optimization 1
1.1 Multiscale Modelling 2
1.1.1 Basic Information on Multiscale Modelling 2
1.1.2 Review of problems connected with multiscale modelling techniques 3
1.1.3 Prospective Applications of the Multiscale Modelling 6
1.2 Optimization 6
1.3 Contents of the Book 7
References 7
2 Modelling of Phenomena 9
2.1 Physical Phenomena in Nanoscale 9
2.1.1 The Linkage Between Quantum and Classical Molecular Mechanics 10
2.1.2 Atomic Potentials 15
2.1.2.1 Lennard-Jones Potential 15
2.1.2.2 Morse Potential 16
2.1.2.3 Stillinger-Weber Potential 17
2.1.2.4 Reactive empirical bond order (REBO) potential 18
2.1.2.5 Reactive force fields (ReaxFF) 19
2.1.2.6 Murrell-Mottram Potential 20
2.1.2.7 Embedded Atom Method 21
2.2 Physical Phenomena in Microscale 22
2.2.1 Microstructural Aspects of Selection of a Microscale Model 22
2.2.1.1 Plastometric Tests 23
2.2.1.2 Inverse Analysis 26
2.2.2 Flow Stress 26
2.2.2.1 Procedure to Determine Flow Stress 26
2.2.2.2 Flow Stress Model 28
2.2.2.3 Identification of the Flow Stress Model 30
2.2.3 Recrystallization 32
2.2.3.1 Static Microstructural Changes 33
2.2.3.2 Dynamic Softening 38
2.2.3.3 Grain Growth 41
2.2.3.4 Effect of Precipitation 42
2.2.4 Phase Transformations 43
2.2.4.1 JMAK-Equation-Based Model 47
2.2.4.2 Differential Equation Model 49
2.2.4.3 Numerical Solution 50
2.2.4.4 Additivity Rule 50
2.2.4.5 Phase Transformation During Heating 51
2.2.4.6 Identification of the Model 52
2.2.4.7 Case Studies 56
2.2.5 Fracture 57
2.2.5.1 Fundamentals of Fracture Mechanics and Classical Fracture and Failure Hypotheses 58
2.2.5.2 Empirical Fracture Criteria 60
2.2.5.3 Fracture Mechanics 61
2.2.5.4 Continuum Damage Mechanics (CDM) 62
2.2.6 Creep 66
2.2.7 Fatigue 71
References 73
3 Computational Methods 81
3.1 Computational Methods for Continuum 81
3.1.1 FEM and XFEM 81
3.1.1.1 Principles of Computational Modelling Using FEM 81
3.1.1.2 Principles of Computational Modelling Using FEM 83
3.1.1.3 Extended Finite Element Method 88
3.1.2 BEM and FEM/BEM Coupling 91
3.1.2.1 BEM 91
3.1.2.2 Coupling FEM and BEM 95
3.1.3 Computational Homogenization 96
3.2 Computational Methods for Nano and Micro 101
3.2.1 Classical Molecular Dynamics 101
3.2.1.1 Equations of Motion 101
3.2.1.2 Discretization of Equations of Motion 102
3.2.1.3 Temperature Controller 105
3.2.1.4 Evaluation of the Time Step 108
3.2.1.5 Cutoff Radius and Nearest-Neighbour Lists 109
3.2.1.6 Boundary Conditions 111
3.2.1.7 Size of the Atomistic Domain - Limitations of the Molecular Simulations 112
3.2.2 Molecular Statics 114
3.2.2.1 Equilibrium of Interatomic Forces 114
3.2.2.2 Solution of the Molecular Statics Problem 116
3.2.2.3 Numerical Example of the Molecular Statics 118
3.2.3 Cellular Automata 119
3.2.3.1 Cellular Automata Definitions 119
3.2.4 Monte Carlo Methods 125
3.3 Methods of Optimization 127
3.3.1 Optimization Problem Formulation 127
3.3.2 Methods of Conventional Optimization 1
Biography xi
1 Introduction to Multiscale Modelling and Optimization 1
1.1 Multiscale Modelling 2
1.1.1 Basic Information on Multiscale Modelling 2
1.1.2 Review of problems connected with multiscale modelling techniques 3
1.1.3 Prospective Applications of the Multiscale Modelling 6
1.2 Optimization 6
1.3 Contents of the Book 7
References 7
2 Modelling of Phenomena 9
2.1 Physical Phenomena in Nanoscale 9
2.1.1 The Linkage Between Quantum and Classical Molecular Mechanics 10
2.1.2 Atomic Potentials 15
2.1.2.1 Lennard-Jones Potential 15
2.1.2.2 Morse Potential 16
2.1.2.3 Stillinger-Weber Potential 17
2.1.2.4 Reactive empirical bond order (REBO) potential 18
2.1.2.5 Reactive force fields (ReaxFF) 19
2.1.2.6 Murrell-Mottram Potential 20
2.1.2.7 Embedded Atom Method 21
2.2 Physical Phenomena in Microscale 22
2.2.1 Microstructural Aspects of Selection of a Microscale Model 22
2.2.1.1 Plastometric Tests 23
2.2.1.2 Inverse Analysis 26
2.2.2 Flow Stress 26
2.2.2.1 Procedure to Determine Flow Stress 26
2.2.2.2 Flow Stress Model 28
2.2.2.3 Identification of the Flow Stress Model 30
2.2.3 Recrystallization 32
2.2.3.1 Static Microstructural Changes 33
2.2.3.2 Dynamic Softening 38
2.2.3.3 Grain Growth 41
2.2.3.4 Effect of Precipitation 42
2.2.4 Phase Transformations 43
2.2.4.1 JMAK-Equation-Based Model 47
2.2.4.2 Differential Equation Model 49
2.2.4.3 Numerical Solution 50
2.2.4.4 Additivity Rule 50
2.2.4.5 Phase Transformation During Heating 51
2.2.4.6 Identification of the Model 52
2.2.4.7 Case Studies 56
2.2.5 Fracture 57
2.2.5.1 Fundamentals of Fracture Mechanics and Classical Fracture and Failure Hypotheses 58
2.2.5.2 Empirical Fracture Criteria 60
2.2.5.3 Fracture Mechanics 61
2.2.5.4 Continuum Damage Mechanics (CDM) 62
2.2.6 Creep 66
2.2.7 Fatigue 71
References 73
3 Computational Methods 81
3.1 Computational Methods for Continuum 81
3.1.1 FEM and XFEM 81
3.1.1.1 Principles of Computational Modelling Using FEM 81
3.1.1.2 Principles of Computational Modelling Using FEM 83
3.1.1.3 Extended Finite Element Method 88
3.1.2 BEM and FEM/BEM Coupling 91
3.1.2.1 BEM 91
3.1.2.2 Coupling FEM and BEM 95
3.1.3 Computational Homogenization 96
3.2 Computational Methods for Nano and Micro 101
3.2.1 Classical Molecular Dynamics 101
3.2.1.1 Equations of Motion 101
3.2.1.2 Discretization of Equations of Motion 102
3.2.1.3 Temperature Controller 105
3.2.1.4 Evaluation of the Time Step 108
3.2.1.5 Cutoff Radius and Nearest-Neighbour Lists 109
3.2.1.6 Boundary Conditions 111
3.2.1.7 Size of the Atomistic Domain - Limitations of the Molecular Simulations 112
3.2.2 Molecular Statics 114
3.2.2.1 Equilibrium of Interatomic Forces 114
3.2.2.2 Solution of the Molecular Statics Problem 116
3.2.2.3 Numerical Example of the Molecular Statics 118
3.2.3 Cellular Automata 119
3.2.3.1 Cellular Automata Definitions 119
3.2.4 Monte Carlo Methods 125
3.3 Methods of Optimization 127
3.3.1 Optimization Problem Formulation 127
3.3.2 Methods of Conventional Optimization 1
Preface ix
Biography xi
1 Introduction to Multiscale Modelling and Optimization 1
1.1 Multiscale Modelling 2
1.1.1 Basic Information on Multiscale Modelling 2
1.1.2 Review of problems connected with multiscale modelling techniques 3
1.1.3 Prospective Applications of the Multiscale Modelling 6
1.2 Optimization 6
1.3 Contents of the Book 7
References 7
2 Modelling of Phenomena 9
2.1 Physical Phenomena in Nanoscale 9
2.1.1 The Linkage Between Quantum and Classical Molecular Mechanics 10
2.1.2 Atomic Potentials 15
2.1.2.1 Lennard-Jones Potential 15
2.1.2.2 Morse Potential 16
2.1.2.3 Stillinger-Weber Potential 17
2.1.2.4 Reactive empirical bond order (REBO) potential 18
2.1.2.5 Reactive force fields (ReaxFF) 19
2.1.2.6 Murrell-Mottram Potential 20
2.1.2.7 Embedded Atom Method 21
2.2 Physical Phenomena in Microscale 22
2.2.1 Microstructural Aspects of Selection of a Microscale Model 22
2.2.1.1 Plastometric Tests 23
2.2.1.2 Inverse Analysis 26
2.2.2 Flow Stress 26
2.2.2.1 Procedure to Determine Flow Stress 26
2.2.2.2 Flow Stress Model 28
2.2.2.3 Identification of the Flow Stress Model 30
2.2.3 Recrystallization 32
2.2.3.1 Static Microstructural Changes 33
2.2.3.2 Dynamic Softening 38
2.2.3.3 Grain Growth 41
2.2.3.4 Effect of Precipitation 42
2.2.4 Phase Transformations 43
2.2.4.1 JMAK-Equation-Based Model 47
2.2.4.2 Differential Equation Model 49
2.2.4.3 Numerical Solution 50
2.2.4.4 Additivity Rule 50
2.2.4.5 Phase Transformation During Heating 51
2.2.4.6 Identification of the Model 52
2.2.4.7 Case Studies 56
2.2.5 Fracture 57
2.2.5.1 Fundamentals of Fracture Mechanics and Classical Fracture and Failure Hypotheses 58
2.2.5.2 Empirical Fracture Criteria 60
2.2.5.3 Fracture Mechanics 61
2.2.5.4 Continuum Damage Mechanics (CDM) 62
2.2.6 Creep 66
2.2.7 Fatigue 71
References 73
3 Computational Methods 81
3.1 Computational Methods for Continuum 81
3.1.1 FEM and XFEM 81
3.1.1.1 Principles of Computational Modelling Using FEM 81
3.1.1.2 Principles of Computational Modelling Using FEM 83
3.1.1.3 Extended Finite Element Method 88
3.1.2 BEM and FEM/BEM Coupling 91
3.1.2.1 BEM 91
3.1.2.2 Coupling FEM and BEM 95
3.1.3 Computational Homogenization 96
3.2 Computational Methods for Nano and Micro 101
3.2.1 Classical Molecular Dynamics 101
3.2.1.1 Equations of Motion 101
3.2.1.2 Discretization of Equations of Motion 102
3.2.1.3 Temperature Controller 105
3.2.1.4 Evaluation of the Time Step 108
3.2.1.5 Cutoff Radius and Nearest-Neighbour Lists 109
3.2.1.6 Boundary Conditions 111
3.2.1.7 Size of the Atomistic Domain - Limitations of the Molecular Simulations 112
3.2.2 Molecular Statics 114
3.2.2.1 Equilibrium of Interatomic Forces 114
3.2.2.2 Solution of the Molecular Statics Problem 116
3.2.2.3 Numerical Example of the Molecular Statics 118
3.2.3 Cellular Automata 119
3.2.3.1 Cellular Automata Definitions 119
3.2.4 Monte Carlo Methods 125
3.3 Methods of Optimization 127
3.3.1 Optimization Problem Formulation 127
3.3.2 Methods of Conventional Optimization 1
Biography xi
1 Introduction to Multiscale Modelling and Optimization 1
1.1 Multiscale Modelling 2
1.1.1 Basic Information on Multiscale Modelling 2
1.1.2 Review of problems connected with multiscale modelling techniques 3
1.1.3 Prospective Applications of the Multiscale Modelling 6
1.2 Optimization 6
1.3 Contents of the Book 7
References 7
2 Modelling of Phenomena 9
2.1 Physical Phenomena in Nanoscale 9
2.1.1 The Linkage Between Quantum and Classical Molecular Mechanics 10
2.1.2 Atomic Potentials 15
2.1.2.1 Lennard-Jones Potential 15
2.1.2.2 Morse Potential 16
2.1.2.3 Stillinger-Weber Potential 17
2.1.2.4 Reactive empirical bond order (REBO) potential 18
2.1.2.5 Reactive force fields (ReaxFF) 19
2.1.2.6 Murrell-Mottram Potential 20
2.1.2.7 Embedded Atom Method 21
2.2 Physical Phenomena in Microscale 22
2.2.1 Microstructural Aspects of Selection of a Microscale Model 22
2.2.1.1 Plastometric Tests 23
2.2.1.2 Inverse Analysis 26
2.2.2 Flow Stress 26
2.2.2.1 Procedure to Determine Flow Stress 26
2.2.2.2 Flow Stress Model 28
2.2.2.3 Identification of the Flow Stress Model 30
2.2.3 Recrystallization 32
2.2.3.1 Static Microstructural Changes 33
2.2.3.2 Dynamic Softening 38
2.2.3.3 Grain Growth 41
2.2.3.4 Effect of Precipitation 42
2.2.4 Phase Transformations 43
2.2.4.1 JMAK-Equation-Based Model 47
2.2.4.2 Differential Equation Model 49
2.2.4.3 Numerical Solution 50
2.2.4.4 Additivity Rule 50
2.2.4.5 Phase Transformation During Heating 51
2.2.4.6 Identification of the Model 52
2.2.4.7 Case Studies 56
2.2.5 Fracture 57
2.2.5.1 Fundamentals of Fracture Mechanics and Classical Fracture and Failure Hypotheses 58
2.2.5.2 Empirical Fracture Criteria 60
2.2.5.3 Fracture Mechanics 61
2.2.5.4 Continuum Damage Mechanics (CDM) 62
2.2.6 Creep 66
2.2.7 Fatigue 71
References 73
3 Computational Methods 81
3.1 Computational Methods for Continuum 81
3.1.1 FEM and XFEM 81
3.1.1.1 Principles of Computational Modelling Using FEM 81
3.1.1.2 Principles of Computational Modelling Using FEM 83
3.1.1.3 Extended Finite Element Method 88
3.1.2 BEM and FEM/BEM Coupling 91
3.1.2.1 BEM 91
3.1.2.2 Coupling FEM and BEM 95
3.1.3 Computational Homogenization 96
3.2 Computational Methods for Nano and Micro 101
3.2.1 Classical Molecular Dynamics 101
3.2.1.1 Equations of Motion 101
3.2.1.2 Discretization of Equations of Motion 102
3.2.1.3 Temperature Controller 105
3.2.1.4 Evaluation of the Time Step 108
3.2.1.5 Cutoff Radius and Nearest-Neighbour Lists 109
3.2.1.6 Boundary Conditions 111
3.2.1.7 Size of the Atomistic Domain - Limitations of the Molecular Simulations 112
3.2.2 Molecular Statics 114
3.2.2.1 Equilibrium of Interatomic Forces 114
3.2.2.2 Solution of the Molecular Statics Problem 116
3.2.2.3 Numerical Example of the Molecular Statics 118
3.2.3 Cellular Automata 119
3.2.3.1 Cellular Automata Definitions 119
3.2.4 Monte Carlo Methods 125
3.3 Methods of Optimization 127
3.3.1 Optimization Problem Formulation 127
3.3.2 Methods of Conventional Optimization 1