125,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
63 °P sammeln
  • Broschiertes Buch

This book traces the quest to use nanostructured media for novel and improved optoelectronic devices. Starting with the invention of the heterostructure laser, the progression via thin films to quasi zero-dimensional quantum dots has led to novel device concepts and tremendous improvements in device performance. Along the way sophisticated methods of material preparation and characterization have been developed. Novel physical phenomena have emerged and are now used in devices such as lasers and optical amplifiers. Leading experts - among them Nobel laureate Zhores Alferov - write here about…mehr

Produktbeschreibung
This book traces the quest to use nanostructured media for novel and improved optoelectronic devices. Starting with the invention of the heterostructure laser, the progression via thin films to quasi zero-dimensional quantum dots has led to novel device concepts and tremendous improvements in device performance. Along the way sophisticated methods of material preparation and characterization have been developed. Novel physical phenomena have emerged and are now used in devices such as lasers and optical amplifiers. Leading experts - among them Nobel laureate Zhores Alferov - write here about the fundamental concepts behind nano-optoelectronics, the material basis, physical phenomena, device physics and systems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Professor Dr. Marius Grundman studied physics at the Technical University of Berlin. He worked on the epitaxy and characterization of electronic and optical properties of semiconductor heterostructures and nanostructures as well as devices made from them. He has been Professor of Experimental Physics at the University of Leipzig since 2000.
Rezensionen
From the reviews: "This is an excellent book covering various aspects of semiconductor quantum dots ranging from theory, growth, structural, electronic and optical properties to devices such as quantum dot lasers, photodetectors and optical amplifiers. ... will be a valuable resource for researchers and students working in the field." (Chennupati Jagadish, The Physicist, Vol. 40 (1), 2003)