Nanocrystalline Titanium discusses the features of nanocrystalline titanium production by various SPD methods, also comparing their microstructure and properties. The authors characterize the physical, chemical and mechanical properties of ultrafine grained titanium, indicating which are crucial for their application. Titanium alloys are characterized by high specific strength combined with excellent corrosion resistance, whereas the mechanical properties of pure (or commercial purity - CP) titanium are much lower. SPD methods are proving to be an effective way to increase strength, even to a…mehr
Nanocrystalline Titanium discusses the features of nanocrystalline titanium production by various SPD methods, also comparing their microstructure and properties. The authors characterize the physical, chemical and mechanical properties of ultrafine grained titanium, indicating which are crucial for their application. Titanium alloys are characterized by high specific strength combined with excellent corrosion resistance, whereas the mechanical properties of pure (or commercial purity - CP) titanium are much lower. SPD methods are proving to be an effective way to increase strength, even to a level typical for structural titanium alloys. This book is useful for academics and professionals studying the behavior of metallic materials.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Halina Garbacz, Ph.D. is a professor with the Materials Science and Engineering Department at the Warsaw University of Technology, Warsaw, Poland. Her main achievements are related to the fabrication of ultrafine grained materials using the method of severe plastic deformation and understanding phenomena that determine their performance. She combines experience in material processing with the expertise in materials characterization in nano-scale using advanced microscopic techniques. Her scientific interest is focused on the relationship between microstructure and properties (mechanical, tribological, corrosion resistance) of metals. She is an author or co-author of more than 140 scientific papers and 6 books (4 book chapters). Her achievements in the field of industrial property rights has been confirmed by 9 patents. She is a laureate of Prize from the Rector of the Warsaw University of Technology for scientific achievement (2010, 2012, 2014).
Inhaltsangabe
Section 1 Production of Nanocrystalline Titanium by Large or Severe Plastic Deformation 1. High-pressure torsion and equal-channel angular pressing 2. Combined processing ECAP + TMP 3. Hydrostatic extrusion 4. Friction-stir processing 5. Production of bulk nanocrystalline mill products by conventional metalforming methods Section 2 Properties of Nanocrystalline Titanium Determining its Applications 6. Advanced mechanical properties 7. Strengthening mechanisms and super-strength of severely deformed titanium 8. Corrosion resistance of nanocrystalline titanium 9. Biological properties 10. Tribology 11. Machinability 12. Dental application