This work features contributed chapters on heat transfer and fluid flow processes in nanomaterials and nanofluids, an area of increasing importance in engineering. Leading experts explore a wide range of topics, including nanomaterial properties, nanotechnology for biological heat transfer, multiscale nano-simulations, energy conversion, nanotreatments for cancers, fluid dynamic modeling, nanofiltration, microchannel flow, and natural convection of nanofluids. The book presents the state of the art and offers a view of the future, making it a valuable resource for experts as well as newcomers to this growing field.…mehr
This work features contributed chapters on heat transfer and fluid flow processes in nanomaterials and nanofluids, an area of increasing importance in engineering. Leading experts explore a wide range of topics, including nanomaterial properties, nanotechnology for biological heat transfer, multiscale nano-simulations, energy conversion, nanotreatments for cancers, fluid dynamic modeling, nanofiltration, microchannel flow, and natural convection of nanofluids. The book presents the state of the art and offers a view of the future, making it a valuable resource for experts as well as newcomers to this growing field.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
W.J. Minkowycz is the James P. Hartnett Professor of Mechanical Engineering at the University of Illinois at Chicago. He joined the faculty at UIC in 1966. His primary research interests lie in the numerical modeling of fluid flow and heat transfer problems. Professor Minkowycz is currently the editor-in-chief of the International Journal of Heat and Mass Transfer, Numerical Heat Transfer, and International Communications in Heat and Mass Transfer. He has won numerous awards for his excellence in teaching, research, and service to the heat transfer community. E.M. Sparrow is a professor of mechanical engineering at the University of Minnesota. He has taught and performed research there since 1959. Prior to that, he worked in industry. He is a member of the National Academy of Engineering, a Max Jakob awardee, and is a Morse Alumni Distinguished Teaching Professor and Institute Professor. He has published more than 750 peer-reviewed articles on a wide variety of topics in heat transfer and fluid flow and has guided the research for 90 Ph.D. degrees and 215 MS degrees. Dr. John Abraham has worked in the area of thermal sciences for approximately 20 years. His research areas include nanoscale thermal processes, energy production and distribution, climate monitoring, and medical device development. He has approximately 150 journal publications, conference presentations, book chapters, and patents. Dr. Abraham teaches courses in undergraduate and graduate mechanical engineering programs at the University of St. Thomas, in St. Paul, Minnesota.
Inhaltsangabe
Review of Nanofluid Applications. The Role of Nanoparticle Suspensions in Thermo/Fluid and Biomedical Applications. Multiscale Simulation of Nanoparticle Transport in Deformable Tissue during an Infusion Process in Hyperthermia Treatments of Cancers. Superparamagnetic Iron Oxide Nanoparticle Heating: A Basic Tutorial. Light-Induced Energy Conversion in Liquid Nanoparticle Suspensions. Radiative Properties of Micro/Nanoscale Particles in Dispersions for Photothermal Energy Conversion. On the Thermophysical Properties of Suspensions of Highly Anisotropic Nanoparticles with and without Field-Induced Microstructure. Advances in Fluid Dynamic Modeling of Microfiltration Processes. Computational Analysis of Enhanced Cooling Performance and Pressure Drop for Nanofluid Flow in Microchannels. Natural Convection in Nanofluids. Index.
Review of Nanofluid Applications. The Role of Nanoparticle Suspensions in Thermo/Fluid and Biomedical Applications. Multiscale Simulation of Nanoparticle Transport in Deformable Tissue during an Infusion Process in Hyperthermia Treatments of Cancers. Superparamagnetic Iron Oxide Nanoparticle Heating: A Basic Tutorial. Light-Induced Energy Conversion in Liquid Nanoparticle Suspensions. Radiative Properties of Micro/Nanoscale Particles in Dispersions for Photothermal Energy Conversion. On the Thermophysical Properties of Suspensions of Highly Anisotropic Nanoparticles with and without Field-Induced Microstructure. Advances in Fluid Dynamic Modeling of Microfiltration Processes. Computational Analysis of Enhanced Cooling Performance and Pressure Drop for Nanofluid Flow in Microchannels. Natural Convection in Nanofluids. Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826