- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Provides an introductory survey of nanotechnology. Based on the highly acclaimed 2003 Wiley title Introduction to Nanotechnology , This new textbook includes problem sets for each chapter, updated material from the earlier book, and rewritten sections to be more pedagogical in nature. .
A comprehensive textbook that addresses the recent interest in nanotechnology in the engineering, materials science, chemistry, and physics communities
In recent years, nanotechnology has become one of the most promising and exciting fields of science, triggering an increasing number of university…mehr
Andere Kunden interessierten sich auch für
- Poole, Jr., Charles P.Introduction to Nanotechnology177,99 €
- Nanoscale Science and Technology123,99 €
- Edward L. WolfNanophysics and Nanotechnology56,99 €
- G V EleftheriadesNegative-Refraction Metamaterials154,99 €
- Nikolas ProvatasPhase-Field Methods in Materia136,99 €
- Jianmin QuFundamentals of Micromechanics of Solids174,99 €
- Mel SchwartzEncyclopedia of Smart Materials, 2 Volume Set1.235,99 €
-
-
-
Provides an introductory survey of nanotechnology. Based on the highly acclaimed 2003 Wiley title Introduction to Nanotechnology , This new textbook includes problem sets for each chapter, updated material from the earlier book, and rewritten sections to be more pedagogical in nature. .
A comprehensive textbook that addresses the recent interest in nanotechnology in the engineering, materials science, chemistry, and physics communities
In recent years, nanotechnology has become one of the most promising and exciting fields of science, triggering an increasing number of university engineering, materials science, chemistry, and physics departments to introduce courses on this emerging topic. Now, Drs. Owens and Poole have revised, updated, and revamped their 2003 work, Introduction to Nanotechnology, to make it more accessible as a textbook for advanced undergraduate- and graduate-level courses on the fascinating field of nanotechnology and nanoscience.
The Physics and Chemistry of Nanosolids takes a pedagogical approach to the subject and assumes only an introductory understanding of the physics and chemistry of macroscopic solids and models developed to explain properties, such as the theory of phonon and lattice vibrations and electronic band structure. The authors describe how properties depend on size in the nanometer regime and explain why these changes occur using relatively simple models of the physics and chemistry of the solid state. Additionally, this accessible book:
_ Provides an introductory overview of the basic principles of solids
_ Describes the various methods used to measure the properties of nanosolids
_ Explains how and why properties change when reducing the size of solids to nano-dimensions, and what they predict when one or more dimensions of a solid has a nano-length
_ Presents data on how various properties of solids are affected by nanosizing and examines why these changes occur
_ Contains a chapter entirely devoted to the importance of carbon nanostructured materials and the potential applications of carbon nanostructures
The Physics and Chemistry of Nanosolids is complete with a series of exercises at the end of each chapter for readers to enhance their understanding of the material presented, making this an ideal textbook for students and a valuable tutorial for technical professionals and researchers who are interested in learning more about this important topic.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
A comprehensive textbook that addresses the recent interest in nanotechnology in the engineering, materials science, chemistry, and physics communities
In recent years, nanotechnology has become one of the most promising and exciting fields of science, triggering an increasing number of university engineering, materials science, chemistry, and physics departments to introduce courses on this emerging topic. Now, Drs. Owens and Poole have revised, updated, and revamped their 2003 work, Introduction to Nanotechnology, to make it more accessible as a textbook for advanced undergraduate- and graduate-level courses on the fascinating field of nanotechnology and nanoscience.
The Physics and Chemistry of Nanosolids takes a pedagogical approach to the subject and assumes only an introductory understanding of the physics and chemistry of macroscopic solids and models developed to explain properties, such as the theory of phonon and lattice vibrations and electronic band structure. The authors describe how properties depend on size in the nanometer regime and explain why these changes occur using relatively simple models of the physics and chemistry of the solid state. Additionally, this accessible book:
_ Provides an introductory overview of the basic principles of solids
_ Describes the various methods used to measure the properties of nanosolids
_ Explains how and why properties change when reducing the size of solids to nano-dimensions, and what they predict when one or more dimensions of a solid has a nano-length
_ Presents data on how various properties of solids are affected by nanosizing and examines why these changes occur
_ Contains a chapter entirely devoted to the importance of carbon nanostructured materials and the potential applications of carbon nanostructures
The Physics and Chemistry of Nanosolids is complete with a series of exercises at the end of each chapter for readers to enhance their understanding of the material presented, making this an ideal textbook for students and a valuable tutorial for technical professionals and researchers who are interested in learning more about this important topic.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 14506740000
- 1. Auflage
- Seitenzahl: 560
- Erscheinungstermin: 1. April 2008
- Englisch
- Abmessung: 240mm x 161mm x 34mm
- Gewicht: 915g
- ISBN-13: 9780470067406
- ISBN-10: 0470067403
- Artikelnr.: 23172606
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 14506740000
- 1. Auflage
- Seitenzahl: 560
- Erscheinungstermin: 1. April 2008
- Englisch
- Abmessung: 240mm x 161mm x 34mm
- Gewicht: 915g
- ISBN-13: 9780470067406
- ISBN-10: 0470067403
- Artikelnr.: 23172606
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Frank J. Owens, PhD, is a Senior Research Scientist of the U.S. Army's Armament Research, Development, and Engineering Center, and a Professor of Physics in the graduate school of Hunter College of the City University of New York. Charles P. Poole Jr., PhD, is Professor Emeritus in the Department of Physics and Astronomy at the University of South Carolina and is a member of the USC Nanotechnology Center. Both authors are Fellows of the American Physical Society.
Preface xv
1. Physics of Bulk Solids 1
1.1 Structure 1
1.1.1 Size Dependence of Properties 1
1.1.2 Crystal Structures 2
1.1.3 Face-Centered Cubic Nanoparticles 7
1.1.4 Large Face-Centered Cubic Nanoparticles 9
1.1.5 Tetrahedrally Bonded Semiconductor Structures 10
1.1.6 Lattice Vibrations 14
1.2 Surfaces of Crystals 16
1.2.1 Surface Characteristics 16
1.2.2 Surface Energy 17
1.2.3 Face-Centered Cubic Surface Layers 18
1.2.4 Surfaces of Zinc Blende and Diamond Structures 21
1.2.5 Adsorption of Gases 23
1.2.6 Electronic Structure of a Surface 25
1.2.7 Surface Quantum Well 26
1.3 Energy Bands 26
1.3.1 Insulators, Semiconductors, and Conductors 26
1.3.2 Reciprocal Space 27
1.3.3 Energy Bands and Gaps of Semiconductors 28
1.3.4 Effective Mass 34
1.3.5 Fermi Surfaces 35
1.4 Localized Particles 36
1.4.1 Donors, Acceptors, and Deep Traps 36
1.4.2 Mobility 37
1.4.3 Excitons 38
Problems 40
References 41
2. Methods of Measuring Properties of Nanostructures 43
2.1 Introduction 43
2.2 Structure 44
2.2.1 Atomic Structures 44
2.2.2 Crystallography 45
2.2.3 Particle Size Determination 50
2.2.4 Surface Structure 54
2.3 Microscopy 54
2.3.1 Transmission Electron Microscopy 54
2.3.2 Field Ion Microscopy 59
2.3.3 Scanning Microscopy 59
2.4 Spectroscopy 66
2.4.1 Infrared and Raman Spectroscopy 66
2.4.2 Photoemission, X-Ray, and Auger Spectroscopy 72
2.4.3 Magnetic Resonance 78
2.5 Various Bulk Properties 81
2.5.1 Mechanical Properties 81
2.5.2 Electrical Properties 81
2.5.3 Magnetic Properties 82
2.5.4 Other Properties 82
Problems 82
References 83
3. Properties of Individual Nanoparticles 85
3.1 Introduction 85
3.2 Metal Nanoclusters 86
3.2.1 Magic Numbers 86
3.2.2 Theoretical Modeling of Nanoparticles 88
3.2.3 Geometric Structure 91
3.2.4 Electronic Structure 94
3.2.5 Reactivity 97
3.2.6 Fluctuations 100
3.2.7 Magnetic Clusters 100
3.2.8 Bulk-to-Nano Transition 103
3.3 Semiconducting Nanoparticles 104
3.3.1 Optical Properties 104
3.3.2 Photofragmentation 106
3.3.3 Coulomb Explosion 107
3.4 Rare-Gas and Molecular Clusters 107
3.4.1 Inert-Gas Clusters 107
3.4.2 Superfluid Clusters 108
3.4.3 Molecular Clusters 109
3.4.4 Nanosized Organic Crystals 111
3.5 Methods of Synthesis 111
3.5.1 RF Plasma 111
3.5.2 Chemical Methods 111
3.5.3 Thermolysis 112
3.5.4 Pulsed-Laser Methods 114
3.5.5 Synthesis of Nanosized Organic Crystals 114
3.6 Summary 118
Problems 118
4. The Chemistry of Nanostructures 121
4.1 Chemical Synthesis of Nanostructures 121
4.1.1 Solution Synthesis 121
4.1.2 Capped Nanoclusters 122
4.1.3 Solgel Processing 124
4.1.4 Electrochemical Synthesis of Nanostructures 125
4.2 Reactivity of Nanostructures 125
4.3 Catalysis 127
4.3.1 Nature of Catalysis 127
4.3.2 Surface Area of Nanoparticles 127
4.3.3 Porous Materials 131
4.4 Self-Assembly 135
4.4.1 The Self-Assembly Process 135
4.4.2 Semiconductor Islands 136
4.4.3 Monolayers 139
Problems 141
5. Polymer and Biological Nanostructures 143
5.1 Polymers 143
5.1.1 Polymer Structure 143
5.1.2 Sizes of Polymers 146
5.1.3 Nanocrystals of Polymers 148
5.1.4 Conductive Polymers 151
5.1.5 Block Copolymers 152
5.2 Biological Nanostructures 154
5.2.1 Sizes of Biological Nanostructures 154
5.2.2 Polypeptide Nanowire and Protein Nanoparticles 160
5.2.3 Nucleic Acids 162
5.2.3.1 DNA Double Nanowire 162
5.2.3.2 Genetic Code and Protein Synthesis 166
5.2.3.3 Proteins 167
5.2.3.4 Micelles and Vesicles 169
5.2.3.5 Multilayer Films 172
Problems 174
References 174
6. Cohesive Energy 177
6.1 Ionic Solids 177
6.2 Defects in Ionic Solids 183
6.3 Covalently Bonded Solids 185
6.4 Organic Crystals 186
6.5 Inert-Gas Solids 190
6.6 Metals 191
6.7 Conclusion 193
Problems 193
7. Vibrational Properties 195
7.1 The Finite One-Dimensional Monatomic Lattice 195
7.2 Ionic Solids 197
7.3 Experimental Observations 199
7.3.1 Optical and Acoustical Modes 199
7.3.2 Vibrational Spectroscopy of Surface Layers of Nanoparticles 201
7.3.2.1 Raman Spectroscopy of Surface Layers 201
7.3.2.2 Infrared Spectroscopy of Surface Layers 201
7.4 Phonon Confinement 207
7.5 Effect of Dimension on Lattice Vibrations 209
7.6 Effect of Dimension on Vibrational Density of States 211
7.7 Effect of Size on Debye Frequency 215
7.8 Melting Temperature 216
7.9 Specific Heat 218
7.10 Plasmons 220
7.11 Surface-Enhanced Raman Spectroscopy 222
7.12 Phase Transitions 223
Problems 226
References 227
8. Electronic Properties 229
8.1 Ionic Solids 229
8.2 Covalently Bonded Solids 232
8.3 Metals 234
8.3.1 Effect of Lattice Parameter on Electronic Structure 235
8.3.2 Free-Electron Model 235
8.3.3 The Tight-Binding Model 239
8.4 Measurements of Electronic Structure of Nanoparticles 242
8.4.1 Semiconducting Nanoparticles 242
8.4.2 Organic Solids 248
8.4.3 Metals 250
Problems 251
9. Quantum Wells, Wires, and Dots 253
9.1 Introduction 253
9.2 Fabricating Quantum Nanostructures 253
9.2.1 Solution Fabrication 254
9.2.2 Lithography 257
9.3 Size and Dimensionality Effects 261
9.3.1 Size Effects 261
9.3.2 Size Effects on Conduction Electrons 263
9.3.3 Conduction Electrons and Dimensionality 264
9.3.4 Fermi Gas and Density of States 265
9.3.5 Potential Wells 268
9.3.6 Partial Confinement 272
9.3.7 Properties Dependent on Density of States 273
9.4 Excitons 275
9.5 Single-Electron Tunneling 276
9.6 Applications 280
9.6.1 Infrared Detectors 280
9.6.2 Quantum Dot Lasers 280
Problems 285
References 285
10. Carbon Nanostructures 287
10.1 Introduction 287
10.2 Carbon Molecules 287
10.2.1 Nature of the Carbon Bond 287
10.2.2 New Carbon Structures 289
10.3 Carbon Clusters 289
10.3.1 Small Carbon Clusters 289
10.3.2 Buckyball 292
10.3.3 The Structure of Molecular C60 293
10.3.4 Crystalline C60 296
10.3.5 Larger and Smaller Buckyballs 300
10.3.6 Buckyballs of Other Atoms 300
10.4 Carbon Nanotubes 301
10.4.1 Fabrication 301
10.4.2 Structure 304
10.4.3 Electronic Properties 306
10.4.4 Vibrational Properties 312
10.4.5 Functionalization 314
10.4.6 Doped Carbon Nanotubes 322
10.4.7 Mechanical Properties 325
10.5 Nanotube Composites 327
10.5.1 Polymer-Carbon Nanotube Composites 327
10.5.2 Metal-Carbon Nanotube Composites 329
10.6 Graphene Nanostructures 330
Problems 335
11. Bulk Nanostructured Materials 337
11.1 Solid Methods for Preparation of Disordered Nanostructures 337
11.1.1 Methods of Synthesis 337
11.1.2 Metal Nanocluster Composite Glasses 340
11.1.3 Porous Silicon 343
11.2 Nanocomposites 347
11.2.1 Layered Nanocomposites 347
11.2.2 Nanowire Composites 349
11.2.3 Composites of Nanoparticles 350
11.3 Nanostructured Crystals 351
11.3.1 Natural Nanocrystals 351
11.3.2 Crystals of Metal Nanoparticles 352
11.3.3 Arrays of Nanoparticles in Zeolites 355
11.3.4 Nanoparticle Lattices in Colloidal Suspensions 357
11.3.5 Computational Prediction of Cluster Lattices 358
11.4 Electrical Conduction in Bulk Nanostructured Materials 359
11.4.1 Bulk Materials Consisting of Nanosized Grains 359
11.4.2 Nanometer-Thick Amorphous Films 364
11.5 Other Properties 364
Problems 365
12. Mechanical Properties of Nanostructured Materials 367
12.1 Stress-Strain Behavior of Materials 367
12.2 Failure Mechanisms of Conventional Grain-Sized Materials 370
12.3 Mechanical Properties of Consolidated Nano-Grained Materials 371
12.4 Nanostructured Multilayers 374
12.5 Mechanical and Dynamical Properties of Nanosized Devices 376
12.5.1 General Considerations 376
12.5.2 Nanopendulum 378
12.5.3 Vibrations of a Nanometer String 380
12.5.4 The Nanospring 381
12.5.5 The Clamped Beam 382
12.5.6 The Challenges and Possibilities of Nanomechanical Sensors 385
12.5.7 Methods of Fabrication of Nanosized Devices 387
Problems 390
13. Magnetism in Nanostructures 393
13.1 Basics of Ferromagnetism 393
13.2 Behavior of Powders of Ferromagnetic Nanoparticles 398
13.2.1 Properties of a Single Ferromagnetic Nanoparticle 398
13.2.2 Dynamics of Individual Magnetic Nanoparticles 400
13.2.3 Measurements of Superparamagnetism and the Blocking Temperature 402
13.2.4 Nanopore Containment of Magnetic Particles 405
13.3 Ferrofluids 406
13.4 Bulk Nanostructured Magnetic Materials 413
13.4.1 Effect of Nanosized Grain Structure on Magnetic Properties 413
13.4.2 Magnetoresistive Materials 416
13.4.3 Carbon Nanostructured Ferromagnets 424
13.5 Antiferromagnetic Nanoparticles 429
Problems 430
14. Nanoelectronics, Spintronics, Molecular Electronics, and Photonics 433
14.1 Nanoelectronics 433
14.1.1 N and P Doping and PN Junctions 433
14.1.2 MOSFET 435
14.1.3 Scaling of MOSFETs 436
14.2 Spintronics 440
14.2.1 Definition and Examples of Spintronic Devices 440
14.2.2 Magnetic Storage and Spin Valves 440
14.2.3 Dilute Magnetic Semiconductors 445
14.3 Molecular Switches and Electronics 449
14.3.1 Molecular Switches 449
14.3.2 Molecular Electronics 453
14.3.3 Mechanism of Conduction through a Molecule 458
14.4 Photonic Crystals 459
Problems 465
Reference 466
15. Superconductivity in Nanomaterials 467
15.1 Introduction 467
15.2 Zero Resistance 467
15.2.1 The Superconducting Gap 469
15.2.2 Cooper Pairs 470
15.3 The Meissner Effect 472
15.3.1 Magnetic Field Exclusion 472
15.3.2 Type I and Type II Superconductors 474
15.4 Properties of Flux 478
15.4.1 Quantization of Flux 478
15.4.2 Vortex Configurations 479
15.4.3 Flux Creep and Flux Flow 480
15.4.4 Vortex Pinning 484
15.5 Dependence of Superconducting Properties on Size Effects 484
15.6 Resistivity and Sheet Resistance 484
15.7 Proximity Effect 488
15.8 Superconductors as Nanomaterials 490
15.9 Tunneling and Josephson Junctions 491
15.9.1 Tunneling 491
15.9.2 Weak Links 491
15.9.3 Josephson Effect 493
15.9.4 Josephson Junctions 494
15.9.5 Ultrasmall Josephson Junctions 494
15.10 Superconducting Quantum Interference Device (Squid) 495
15.11 Buckministerfullerenes 496
15.11.1 The Structure of C60 and Its Crystal 496
15.11.2 Alkali-Doped C60 496
15.11.3 Superconductivity in C60 497
Problems 498
References 499
Appendix A Formulas for Dimensionality 501
A.1 Introduction 501
A.2 Delocalization 501
A.3 Square and Parabolic Wells 502
A.4 Partial Confinement 503
Appendix B Tabulations of Semiconducting Material Properties 507
Appendix C Face-Centered Cubic and Hexagonal Close-Packed Nanoparticles 515
C.1 Introduction 515
C.2 Face-Centered Cubic Nanoparticles 515
C.3 Hexagonal Close-Packed Nanoparticles 519
Index 521
1. Physics of Bulk Solids 1
1.1 Structure 1
1.1.1 Size Dependence of Properties 1
1.1.2 Crystal Structures 2
1.1.3 Face-Centered Cubic Nanoparticles 7
1.1.4 Large Face-Centered Cubic Nanoparticles 9
1.1.5 Tetrahedrally Bonded Semiconductor Structures 10
1.1.6 Lattice Vibrations 14
1.2 Surfaces of Crystals 16
1.2.1 Surface Characteristics 16
1.2.2 Surface Energy 17
1.2.3 Face-Centered Cubic Surface Layers 18
1.2.4 Surfaces of Zinc Blende and Diamond Structures 21
1.2.5 Adsorption of Gases 23
1.2.6 Electronic Structure of a Surface 25
1.2.7 Surface Quantum Well 26
1.3 Energy Bands 26
1.3.1 Insulators, Semiconductors, and Conductors 26
1.3.2 Reciprocal Space 27
1.3.3 Energy Bands and Gaps of Semiconductors 28
1.3.4 Effective Mass 34
1.3.5 Fermi Surfaces 35
1.4 Localized Particles 36
1.4.1 Donors, Acceptors, and Deep Traps 36
1.4.2 Mobility 37
1.4.3 Excitons 38
Problems 40
References 41
2. Methods of Measuring Properties of Nanostructures 43
2.1 Introduction 43
2.2 Structure 44
2.2.1 Atomic Structures 44
2.2.2 Crystallography 45
2.2.3 Particle Size Determination 50
2.2.4 Surface Structure 54
2.3 Microscopy 54
2.3.1 Transmission Electron Microscopy 54
2.3.2 Field Ion Microscopy 59
2.3.3 Scanning Microscopy 59
2.4 Spectroscopy 66
2.4.1 Infrared and Raman Spectroscopy 66
2.4.2 Photoemission, X-Ray, and Auger Spectroscopy 72
2.4.3 Magnetic Resonance 78
2.5 Various Bulk Properties 81
2.5.1 Mechanical Properties 81
2.5.2 Electrical Properties 81
2.5.3 Magnetic Properties 82
2.5.4 Other Properties 82
Problems 82
References 83
3. Properties of Individual Nanoparticles 85
3.1 Introduction 85
3.2 Metal Nanoclusters 86
3.2.1 Magic Numbers 86
3.2.2 Theoretical Modeling of Nanoparticles 88
3.2.3 Geometric Structure 91
3.2.4 Electronic Structure 94
3.2.5 Reactivity 97
3.2.6 Fluctuations 100
3.2.7 Magnetic Clusters 100
3.2.8 Bulk-to-Nano Transition 103
3.3 Semiconducting Nanoparticles 104
3.3.1 Optical Properties 104
3.3.2 Photofragmentation 106
3.3.3 Coulomb Explosion 107
3.4 Rare-Gas and Molecular Clusters 107
3.4.1 Inert-Gas Clusters 107
3.4.2 Superfluid Clusters 108
3.4.3 Molecular Clusters 109
3.4.4 Nanosized Organic Crystals 111
3.5 Methods of Synthesis 111
3.5.1 RF Plasma 111
3.5.2 Chemical Methods 111
3.5.3 Thermolysis 112
3.5.4 Pulsed-Laser Methods 114
3.5.5 Synthesis of Nanosized Organic Crystals 114
3.6 Summary 118
Problems 118
4. The Chemistry of Nanostructures 121
4.1 Chemical Synthesis of Nanostructures 121
4.1.1 Solution Synthesis 121
4.1.2 Capped Nanoclusters 122
4.1.3 Solgel Processing 124
4.1.4 Electrochemical Synthesis of Nanostructures 125
4.2 Reactivity of Nanostructures 125
4.3 Catalysis 127
4.3.1 Nature of Catalysis 127
4.3.2 Surface Area of Nanoparticles 127
4.3.3 Porous Materials 131
4.4 Self-Assembly 135
4.4.1 The Self-Assembly Process 135
4.4.2 Semiconductor Islands 136
4.4.3 Monolayers 139
Problems 141
5. Polymer and Biological Nanostructures 143
5.1 Polymers 143
5.1.1 Polymer Structure 143
5.1.2 Sizes of Polymers 146
5.1.3 Nanocrystals of Polymers 148
5.1.4 Conductive Polymers 151
5.1.5 Block Copolymers 152
5.2 Biological Nanostructures 154
5.2.1 Sizes of Biological Nanostructures 154
5.2.2 Polypeptide Nanowire and Protein Nanoparticles 160
5.2.3 Nucleic Acids 162
5.2.3.1 DNA Double Nanowire 162
5.2.3.2 Genetic Code and Protein Synthesis 166
5.2.3.3 Proteins 167
5.2.3.4 Micelles and Vesicles 169
5.2.3.5 Multilayer Films 172
Problems 174
References 174
6. Cohesive Energy 177
6.1 Ionic Solids 177
6.2 Defects in Ionic Solids 183
6.3 Covalently Bonded Solids 185
6.4 Organic Crystals 186
6.5 Inert-Gas Solids 190
6.6 Metals 191
6.7 Conclusion 193
Problems 193
7. Vibrational Properties 195
7.1 The Finite One-Dimensional Monatomic Lattice 195
7.2 Ionic Solids 197
7.3 Experimental Observations 199
7.3.1 Optical and Acoustical Modes 199
7.3.2 Vibrational Spectroscopy of Surface Layers of Nanoparticles 201
7.3.2.1 Raman Spectroscopy of Surface Layers 201
7.3.2.2 Infrared Spectroscopy of Surface Layers 201
7.4 Phonon Confinement 207
7.5 Effect of Dimension on Lattice Vibrations 209
7.6 Effect of Dimension on Vibrational Density of States 211
7.7 Effect of Size on Debye Frequency 215
7.8 Melting Temperature 216
7.9 Specific Heat 218
7.10 Plasmons 220
7.11 Surface-Enhanced Raman Spectroscopy 222
7.12 Phase Transitions 223
Problems 226
References 227
8. Electronic Properties 229
8.1 Ionic Solids 229
8.2 Covalently Bonded Solids 232
8.3 Metals 234
8.3.1 Effect of Lattice Parameter on Electronic Structure 235
8.3.2 Free-Electron Model 235
8.3.3 The Tight-Binding Model 239
8.4 Measurements of Electronic Structure of Nanoparticles 242
8.4.1 Semiconducting Nanoparticles 242
8.4.2 Organic Solids 248
8.4.3 Metals 250
Problems 251
9. Quantum Wells, Wires, and Dots 253
9.1 Introduction 253
9.2 Fabricating Quantum Nanostructures 253
9.2.1 Solution Fabrication 254
9.2.2 Lithography 257
9.3 Size and Dimensionality Effects 261
9.3.1 Size Effects 261
9.3.2 Size Effects on Conduction Electrons 263
9.3.3 Conduction Electrons and Dimensionality 264
9.3.4 Fermi Gas and Density of States 265
9.3.5 Potential Wells 268
9.3.6 Partial Confinement 272
9.3.7 Properties Dependent on Density of States 273
9.4 Excitons 275
9.5 Single-Electron Tunneling 276
9.6 Applications 280
9.6.1 Infrared Detectors 280
9.6.2 Quantum Dot Lasers 280
Problems 285
References 285
10. Carbon Nanostructures 287
10.1 Introduction 287
10.2 Carbon Molecules 287
10.2.1 Nature of the Carbon Bond 287
10.2.2 New Carbon Structures 289
10.3 Carbon Clusters 289
10.3.1 Small Carbon Clusters 289
10.3.2 Buckyball 292
10.3.3 The Structure of Molecular C60 293
10.3.4 Crystalline C60 296
10.3.5 Larger and Smaller Buckyballs 300
10.3.6 Buckyballs of Other Atoms 300
10.4 Carbon Nanotubes 301
10.4.1 Fabrication 301
10.4.2 Structure 304
10.4.3 Electronic Properties 306
10.4.4 Vibrational Properties 312
10.4.5 Functionalization 314
10.4.6 Doped Carbon Nanotubes 322
10.4.7 Mechanical Properties 325
10.5 Nanotube Composites 327
10.5.1 Polymer-Carbon Nanotube Composites 327
10.5.2 Metal-Carbon Nanotube Composites 329
10.6 Graphene Nanostructures 330
Problems 335
11. Bulk Nanostructured Materials 337
11.1 Solid Methods for Preparation of Disordered Nanostructures 337
11.1.1 Methods of Synthesis 337
11.1.2 Metal Nanocluster Composite Glasses 340
11.1.3 Porous Silicon 343
11.2 Nanocomposites 347
11.2.1 Layered Nanocomposites 347
11.2.2 Nanowire Composites 349
11.2.3 Composites of Nanoparticles 350
11.3 Nanostructured Crystals 351
11.3.1 Natural Nanocrystals 351
11.3.2 Crystals of Metal Nanoparticles 352
11.3.3 Arrays of Nanoparticles in Zeolites 355
11.3.4 Nanoparticle Lattices in Colloidal Suspensions 357
11.3.5 Computational Prediction of Cluster Lattices 358
11.4 Electrical Conduction in Bulk Nanostructured Materials 359
11.4.1 Bulk Materials Consisting of Nanosized Grains 359
11.4.2 Nanometer-Thick Amorphous Films 364
11.5 Other Properties 364
Problems 365
12. Mechanical Properties of Nanostructured Materials 367
12.1 Stress-Strain Behavior of Materials 367
12.2 Failure Mechanisms of Conventional Grain-Sized Materials 370
12.3 Mechanical Properties of Consolidated Nano-Grained Materials 371
12.4 Nanostructured Multilayers 374
12.5 Mechanical and Dynamical Properties of Nanosized Devices 376
12.5.1 General Considerations 376
12.5.2 Nanopendulum 378
12.5.3 Vibrations of a Nanometer String 380
12.5.4 The Nanospring 381
12.5.5 The Clamped Beam 382
12.5.6 The Challenges and Possibilities of Nanomechanical Sensors 385
12.5.7 Methods of Fabrication of Nanosized Devices 387
Problems 390
13. Magnetism in Nanostructures 393
13.1 Basics of Ferromagnetism 393
13.2 Behavior of Powders of Ferromagnetic Nanoparticles 398
13.2.1 Properties of a Single Ferromagnetic Nanoparticle 398
13.2.2 Dynamics of Individual Magnetic Nanoparticles 400
13.2.3 Measurements of Superparamagnetism and the Blocking Temperature 402
13.2.4 Nanopore Containment of Magnetic Particles 405
13.3 Ferrofluids 406
13.4 Bulk Nanostructured Magnetic Materials 413
13.4.1 Effect of Nanosized Grain Structure on Magnetic Properties 413
13.4.2 Magnetoresistive Materials 416
13.4.3 Carbon Nanostructured Ferromagnets 424
13.5 Antiferromagnetic Nanoparticles 429
Problems 430
14. Nanoelectronics, Spintronics, Molecular Electronics, and Photonics 433
14.1 Nanoelectronics 433
14.1.1 N and P Doping and PN Junctions 433
14.1.2 MOSFET 435
14.1.3 Scaling of MOSFETs 436
14.2 Spintronics 440
14.2.1 Definition and Examples of Spintronic Devices 440
14.2.2 Magnetic Storage and Spin Valves 440
14.2.3 Dilute Magnetic Semiconductors 445
14.3 Molecular Switches and Electronics 449
14.3.1 Molecular Switches 449
14.3.2 Molecular Electronics 453
14.3.3 Mechanism of Conduction through a Molecule 458
14.4 Photonic Crystals 459
Problems 465
Reference 466
15. Superconductivity in Nanomaterials 467
15.1 Introduction 467
15.2 Zero Resistance 467
15.2.1 The Superconducting Gap 469
15.2.2 Cooper Pairs 470
15.3 The Meissner Effect 472
15.3.1 Magnetic Field Exclusion 472
15.3.2 Type I and Type II Superconductors 474
15.4 Properties of Flux 478
15.4.1 Quantization of Flux 478
15.4.2 Vortex Configurations 479
15.4.3 Flux Creep and Flux Flow 480
15.4.4 Vortex Pinning 484
15.5 Dependence of Superconducting Properties on Size Effects 484
15.6 Resistivity and Sheet Resistance 484
15.7 Proximity Effect 488
15.8 Superconductors as Nanomaterials 490
15.9 Tunneling and Josephson Junctions 491
15.9.1 Tunneling 491
15.9.2 Weak Links 491
15.9.3 Josephson Effect 493
15.9.4 Josephson Junctions 494
15.9.5 Ultrasmall Josephson Junctions 494
15.10 Superconducting Quantum Interference Device (Squid) 495
15.11 Buckministerfullerenes 496
15.11.1 The Structure of C60 and Its Crystal 496
15.11.2 Alkali-Doped C60 496
15.11.3 Superconductivity in C60 497
Problems 498
References 499
Appendix A Formulas for Dimensionality 501
A.1 Introduction 501
A.2 Delocalization 501
A.3 Square and Parabolic Wells 502
A.4 Partial Confinement 503
Appendix B Tabulations of Semiconducting Material Properties 507
Appendix C Face-Centered Cubic and Hexagonal Close-Packed Nanoparticles 515
C.1 Introduction 515
C.2 Face-Centered Cubic Nanoparticles 515
C.3 Hexagonal Close-Packed Nanoparticles 519
Index 521
Preface xv
1. Physics of Bulk Solids 1
1.1 Structure 1
1.1.1 Size Dependence of Properties 1
1.1.2 Crystal Structures 2
1.1.3 Face-Centered Cubic Nanoparticles 7
1.1.4 Large Face-Centered Cubic Nanoparticles 9
1.1.5 Tetrahedrally Bonded Semiconductor Structures 10
1.1.6 Lattice Vibrations 14
1.2 Surfaces of Crystals 16
1.2.1 Surface Characteristics 16
1.2.2 Surface Energy 17
1.2.3 Face-Centered Cubic Surface Layers 18
1.2.4 Surfaces of Zinc Blende and Diamond Structures 21
1.2.5 Adsorption of Gases 23
1.2.6 Electronic Structure of a Surface 25
1.2.7 Surface Quantum Well 26
1.3 Energy Bands 26
1.3.1 Insulators, Semiconductors, and Conductors 26
1.3.2 Reciprocal Space 27
1.3.3 Energy Bands and Gaps of Semiconductors 28
1.3.4 Effective Mass 34
1.3.5 Fermi Surfaces 35
1.4 Localized Particles 36
1.4.1 Donors, Acceptors, and Deep Traps 36
1.4.2 Mobility 37
1.4.3 Excitons 38
Problems 40
References 41
2. Methods of Measuring Properties of Nanostructures 43
2.1 Introduction 43
2.2 Structure 44
2.2.1 Atomic Structures 44
2.2.2 Crystallography 45
2.2.3 Particle Size Determination 50
2.2.4 Surface Structure 54
2.3 Microscopy 54
2.3.1 Transmission Electron Microscopy 54
2.3.2 Field Ion Microscopy 59
2.3.3 Scanning Microscopy 59
2.4 Spectroscopy 66
2.4.1 Infrared and Raman Spectroscopy 66
2.4.2 Photoemission, X-Ray, and Auger Spectroscopy 72
2.4.3 Magnetic Resonance 78
2.5 Various Bulk Properties 81
2.5.1 Mechanical Properties 81
2.5.2 Electrical Properties 81
2.5.3 Magnetic Properties 82
2.5.4 Other Properties 82
Problems 82
References 83
3. Properties of Individual Nanoparticles 85
3.1 Introduction 85
3.2 Metal Nanoclusters 86
3.2.1 Magic Numbers 86
3.2.2 Theoretical Modeling of Nanoparticles 88
3.2.3 Geometric Structure 91
3.2.4 Electronic Structure 94
3.2.5 Reactivity 97
3.2.6 Fluctuations 100
3.2.7 Magnetic Clusters 100
3.2.8 Bulk-to-Nano Transition 103
3.3 Semiconducting Nanoparticles 104
3.3.1 Optical Properties 104
3.3.2 Photofragmentation 106
3.3.3 Coulomb Explosion 107
3.4 Rare-Gas and Molecular Clusters 107
3.4.1 Inert-Gas Clusters 107
3.4.2 Superfluid Clusters 108
3.4.3 Molecular Clusters 109
3.4.4 Nanosized Organic Crystals 111
3.5 Methods of Synthesis 111
3.5.1 RF Plasma 111
3.5.2 Chemical Methods 111
3.5.3 Thermolysis 112
3.5.4 Pulsed-Laser Methods 114
3.5.5 Synthesis of Nanosized Organic Crystals 114
3.6 Summary 118
Problems 118
4. The Chemistry of Nanostructures 121
4.1 Chemical Synthesis of Nanostructures 121
4.1.1 Solution Synthesis 121
4.1.2 Capped Nanoclusters 122
4.1.3 Solgel Processing 124
4.1.4 Electrochemical Synthesis of Nanostructures 125
4.2 Reactivity of Nanostructures 125
4.3 Catalysis 127
4.3.1 Nature of Catalysis 127
4.3.2 Surface Area of Nanoparticles 127
4.3.3 Porous Materials 131
4.4 Self-Assembly 135
4.4.1 The Self-Assembly Process 135
4.4.2 Semiconductor Islands 136
4.4.3 Monolayers 139
Problems 141
5. Polymer and Biological Nanostructures 143
5.1 Polymers 143
5.1.1 Polymer Structure 143
5.1.2 Sizes of Polymers 146
5.1.3 Nanocrystals of Polymers 148
5.1.4 Conductive Polymers 151
5.1.5 Block Copolymers 152
5.2 Biological Nanostructures 154
5.2.1 Sizes of Biological Nanostructures 154
5.2.2 Polypeptide Nanowire and Protein Nanoparticles 160
5.2.3 Nucleic Acids 162
5.2.3.1 DNA Double Nanowire 162
5.2.3.2 Genetic Code and Protein Synthesis 166
5.2.3.3 Proteins 167
5.2.3.4 Micelles and Vesicles 169
5.2.3.5 Multilayer Films 172
Problems 174
References 174
6. Cohesive Energy 177
6.1 Ionic Solids 177
6.2 Defects in Ionic Solids 183
6.3 Covalently Bonded Solids 185
6.4 Organic Crystals 186
6.5 Inert-Gas Solids 190
6.6 Metals 191
6.7 Conclusion 193
Problems 193
7. Vibrational Properties 195
7.1 The Finite One-Dimensional Monatomic Lattice 195
7.2 Ionic Solids 197
7.3 Experimental Observations 199
7.3.1 Optical and Acoustical Modes 199
7.3.2 Vibrational Spectroscopy of Surface Layers of Nanoparticles 201
7.3.2.1 Raman Spectroscopy of Surface Layers 201
7.3.2.2 Infrared Spectroscopy of Surface Layers 201
7.4 Phonon Confinement 207
7.5 Effect of Dimension on Lattice Vibrations 209
7.6 Effect of Dimension on Vibrational Density of States 211
7.7 Effect of Size on Debye Frequency 215
7.8 Melting Temperature 216
7.9 Specific Heat 218
7.10 Plasmons 220
7.11 Surface-Enhanced Raman Spectroscopy 222
7.12 Phase Transitions 223
Problems 226
References 227
8. Electronic Properties 229
8.1 Ionic Solids 229
8.2 Covalently Bonded Solids 232
8.3 Metals 234
8.3.1 Effect of Lattice Parameter on Electronic Structure 235
8.3.2 Free-Electron Model 235
8.3.3 The Tight-Binding Model 239
8.4 Measurements of Electronic Structure of Nanoparticles 242
8.4.1 Semiconducting Nanoparticles 242
8.4.2 Organic Solids 248
8.4.3 Metals 250
Problems 251
9. Quantum Wells, Wires, and Dots 253
9.1 Introduction 253
9.2 Fabricating Quantum Nanostructures 253
9.2.1 Solution Fabrication 254
9.2.2 Lithography 257
9.3 Size and Dimensionality Effects 261
9.3.1 Size Effects 261
9.3.2 Size Effects on Conduction Electrons 263
9.3.3 Conduction Electrons and Dimensionality 264
9.3.4 Fermi Gas and Density of States 265
9.3.5 Potential Wells 268
9.3.6 Partial Confinement 272
9.3.7 Properties Dependent on Density of States 273
9.4 Excitons 275
9.5 Single-Electron Tunneling 276
9.6 Applications 280
9.6.1 Infrared Detectors 280
9.6.2 Quantum Dot Lasers 280
Problems 285
References 285
10. Carbon Nanostructures 287
10.1 Introduction 287
10.2 Carbon Molecules 287
10.2.1 Nature of the Carbon Bond 287
10.2.2 New Carbon Structures 289
10.3 Carbon Clusters 289
10.3.1 Small Carbon Clusters 289
10.3.2 Buckyball 292
10.3.3 The Structure of Molecular C60 293
10.3.4 Crystalline C60 296
10.3.5 Larger and Smaller Buckyballs 300
10.3.6 Buckyballs of Other Atoms 300
10.4 Carbon Nanotubes 301
10.4.1 Fabrication 301
10.4.2 Structure 304
10.4.3 Electronic Properties 306
10.4.4 Vibrational Properties 312
10.4.5 Functionalization 314
10.4.6 Doped Carbon Nanotubes 322
10.4.7 Mechanical Properties 325
10.5 Nanotube Composites 327
10.5.1 Polymer-Carbon Nanotube Composites 327
10.5.2 Metal-Carbon Nanotube Composites 329
10.6 Graphene Nanostructures 330
Problems 335
11. Bulk Nanostructured Materials 337
11.1 Solid Methods for Preparation of Disordered Nanostructures 337
11.1.1 Methods of Synthesis 337
11.1.2 Metal Nanocluster Composite Glasses 340
11.1.3 Porous Silicon 343
11.2 Nanocomposites 347
11.2.1 Layered Nanocomposites 347
11.2.2 Nanowire Composites 349
11.2.3 Composites of Nanoparticles 350
11.3 Nanostructured Crystals 351
11.3.1 Natural Nanocrystals 351
11.3.2 Crystals of Metal Nanoparticles 352
11.3.3 Arrays of Nanoparticles in Zeolites 355
11.3.4 Nanoparticle Lattices in Colloidal Suspensions 357
11.3.5 Computational Prediction of Cluster Lattices 358
11.4 Electrical Conduction in Bulk Nanostructured Materials 359
11.4.1 Bulk Materials Consisting of Nanosized Grains 359
11.4.2 Nanometer-Thick Amorphous Films 364
11.5 Other Properties 364
Problems 365
12. Mechanical Properties of Nanostructured Materials 367
12.1 Stress-Strain Behavior of Materials 367
12.2 Failure Mechanisms of Conventional Grain-Sized Materials 370
12.3 Mechanical Properties of Consolidated Nano-Grained Materials 371
12.4 Nanostructured Multilayers 374
12.5 Mechanical and Dynamical Properties of Nanosized Devices 376
12.5.1 General Considerations 376
12.5.2 Nanopendulum 378
12.5.3 Vibrations of a Nanometer String 380
12.5.4 The Nanospring 381
12.5.5 The Clamped Beam 382
12.5.6 The Challenges and Possibilities of Nanomechanical Sensors 385
12.5.7 Methods of Fabrication of Nanosized Devices 387
Problems 390
13. Magnetism in Nanostructures 393
13.1 Basics of Ferromagnetism 393
13.2 Behavior of Powders of Ferromagnetic Nanoparticles 398
13.2.1 Properties of a Single Ferromagnetic Nanoparticle 398
13.2.2 Dynamics of Individual Magnetic Nanoparticles 400
13.2.3 Measurements of Superparamagnetism and the Blocking Temperature 402
13.2.4 Nanopore Containment of Magnetic Particles 405
13.3 Ferrofluids 406
13.4 Bulk Nanostructured Magnetic Materials 413
13.4.1 Effect of Nanosized Grain Structure on Magnetic Properties 413
13.4.2 Magnetoresistive Materials 416
13.4.3 Carbon Nanostructured Ferromagnets 424
13.5 Antiferromagnetic Nanoparticles 429
Problems 430
14. Nanoelectronics, Spintronics, Molecular Electronics, and Photonics 433
14.1 Nanoelectronics 433
14.1.1 N and P Doping and PN Junctions 433
14.1.2 MOSFET 435
14.1.3 Scaling of MOSFETs 436
14.2 Spintronics 440
14.2.1 Definition and Examples of Spintronic Devices 440
14.2.2 Magnetic Storage and Spin Valves 440
14.2.3 Dilute Magnetic Semiconductors 445
14.3 Molecular Switches and Electronics 449
14.3.1 Molecular Switches 449
14.3.2 Molecular Electronics 453
14.3.3 Mechanism of Conduction through a Molecule 458
14.4 Photonic Crystals 459
Problems 465
Reference 466
15. Superconductivity in Nanomaterials 467
15.1 Introduction 467
15.2 Zero Resistance 467
15.2.1 The Superconducting Gap 469
15.2.2 Cooper Pairs 470
15.3 The Meissner Effect 472
15.3.1 Magnetic Field Exclusion 472
15.3.2 Type I and Type II Superconductors 474
15.4 Properties of Flux 478
15.4.1 Quantization of Flux 478
15.4.2 Vortex Configurations 479
15.4.3 Flux Creep and Flux Flow 480
15.4.4 Vortex Pinning 484
15.5 Dependence of Superconducting Properties on Size Effects 484
15.6 Resistivity and Sheet Resistance 484
15.7 Proximity Effect 488
15.8 Superconductors as Nanomaterials 490
15.9 Tunneling and Josephson Junctions 491
15.9.1 Tunneling 491
15.9.2 Weak Links 491
15.9.3 Josephson Effect 493
15.9.4 Josephson Junctions 494
15.9.5 Ultrasmall Josephson Junctions 494
15.10 Superconducting Quantum Interference Device (Squid) 495
15.11 Buckministerfullerenes 496
15.11.1 The Structure of C60 and Its Crystal 496
15.11.2 Alkali-Doped C60 496
15.11.3 Superconductivity in C60 497
Problems 498
References 499
Appendix A Formulas for Dimensionality 501
A.1 Introduction 501
A.2 Delocalization 501
A.3 Square and Parabolic Wells 502
A.4 Partial Confinement 503
Appendix B Tabulations of Semiconducting Material Properties 507
Appendix C Face-Centered Cubic and Hexagonal Close-Packed Nanoparticles 515
C.1 Introduction 515
C.2 Face-Centered Cubic Nanoparticles 515
C.3 Hexagonal Close-Packed Nanoparticles 519
Index 521
1. Physics of Bulk Solids 1
1.1 Structure 1
1.1.1 Size Dependence of Properties 1
1.1.2 Crystal Structures 2
1.1.3 Face-Centered Cubic Nanoparticles 7
1.1.4 Large Face-Centered Cubic Nanoparticles 9
1.1.5 Tetrahedrally Bonded Semiconductor Structures 10
1.1.6 Lattice Vibrations 14
1.2 Surfaces of Crystals 16
1.2.1 Surface Characteristics 16
1.2.2 Surface Energy 17
1.2.3 Face-Centered Cubic Surface Layers 18
1.2.4 Surfaces of Zinc Blende and Diamond Structures 21
1.2.5 Adsorption of Gases 23
1.2.6 Electronic Structure of a Surface 25
1.2.7 Surface Quantum Well 26
1.3 Energy Bands 26
1.3.1 Insulators, Semiconductors, and Conductors 26
1.3.2 Reciprocal Space 27
1.3.3 Energy Bands and Gaps of Semiconductors 28
1.3.4 Effective Mass 34
1.3.5 Fermi Surfaces 35
1.4 Localized Particles 36
1.4.1 Donors, Acceptors, and Deep Traps 36
1.4.2 Mobility 37
1.4.3 Excitons 38
Problems 40
References 41
2. Methods of Measuring Properties of Nanostructures 43
2.1 Introduction 43
2.2 Structure 44
2.2.1 Atomic Structures 44
2.2.2 Crystallography 45
2.2.3 Particle Size Determination 50
2.2.4 Surface Structure 54
2.3 Microscopy 54
2.3.1 Transmission Electron Microscopy 54
2.3.2 Field Ion Microscopy 59
2.3.3 Scanning Microscopy 59
2.4 Spectroscopy 66
2.4.1 Infrared and Raman Spectroscopy 66
2.4.2 Photoemission, X-Ray, and Auger Spectroscopy 72
2.4.3 Magnetic Resonance 78
2.5 Various Bulk Properties 81
2.5.1 Mechanical Properties 81
2.5.2 Electrical Properties 81
2.5.3 Magnetic Properties 82
2.5.4 Other Properties 82
Problems 82
References 83
3. Properties of Individual Nanoparticles 85
3.1 Introduction 85
3.2 Metal Nanoclusters 86
3.2.1 Magic Numbers 86
3.2.2 Theoretical Modeling of Nanoparticles 88
3.2.3 Geometric Structure 91
3.2.4 Electronic Structure 94
3.2.5 Reactivity 97
3.2.6 Fluctuations 100
3.2.7 Magnetic Clusters 100
3.2.8 Bulk-to-Nano Transition 103
3.3 Semiconducting Nanoparticles 104
3.3.1 Optical Properties 104
3.3.2 Photofragmentation 106
3.3.3 Coulomb Explosion 107
3.4 Rare-Gas and Molecular Clusters 107
3.4.1 Inert-Gas Clusters 107
3.4.2 Superfluid Clusters 108
3.4.3 Molecular Clusters 109
3.4.4 Nanosized Organic Crystals 111
3.5 Methods of Synthesis 111
3.5.1 RF Plasma 111
3.5.2 Chemical Methods 111
3.5.3 Thermolysis 112
3.5.4 Pulsed-Laser Methods 114
3.5.5 Synthesis of Nanosized Organic Crystals 114
3.6 Summary 118
Problems 118
4. The Chemistry of Nanostructures 121
4.1 Chemical Synthesis of Nanostructures 121
4.1.1 Solution Synthesis 121
4.1.2 Capped Nanoclusters 122
4.1.3 Solgel Processing 124
4.1.4 Electrochemical Synthesis of Nanostructures 125
4.2 Reactivity of Nanostructures 125
4.3 Catalysis 127
4.3.1 Nature of Catalysis 127
4.3.2 Surface Area of Nanoparticles 127
4.3.3 Porous Materials 131
4.4 Self-Assembly 135
4.4.1 The Self-Assembly Process 135
4.4.2 Semiconductor Islands 136
4.4.3 Monolayers 139
Problems 141
5. Polymer and Biological Nanostructures 143
5.1 Polymers 143
5.1.1 Polymer Structure 143
5.1.2 Sizes of Polymers 146
5.1.3 Nanocrystals of Polymers 148
5.1.4 Conductive Polymers 151
5.1.5 Block Copolymers 152
5.2 Biological Nanostructures 154
5.2.1 Sizes of Biological Nanostructures 154
5.2.2 Polypeptide Nanowire and Protein Nanoparticles 160
5.2.3 Nucleic Acids 162
5.2.3.1 DNA Double Nanowire 162
5.2.3.2 Genetic Code and Protein Synthesis 166
5.2.3.3 Proteins 167
5.2.3.4 Micelles and Vesicles 169
5.2.3.5 Multilayer Films 172
Problems 174
References 174
6. Cohesive Energy 177
6.1 Ionic Solids 177
6.2 Defects in Ionic Solids 183
6.3 Covalently Bonded Solids 185
6.4 Organic Crystals 186
6.5 Inert-Gas Solids 190
6.6 Metals 191
6.7 Conclusion 193
Problems 193
7. Vibrational Properties 195
7.1 The Finite One-Dimensional Monatomic Lattice 195
7.2 Ionic Solids 197
7.3 Experimental Observations 199
7.3.1 Optical and Acoustical Modes 199
7.3.2 Vibrational Spectroscopy of Surface Layers of Nanoparticles 201
7.3.2.1 Raman Spectroscopy of Surface Layers 201
7.3.2.2 Infrared Spectroscopy of Surface Layers 201
7.4 Phonon Confinement 207
7.5 Effect of Dimension on Lattice Vibrations 209
7.6 Effect of Dimension on Vibrational Density of States 211
7.7 Effect of Size on Debye Frequency 215
7.8 Melting Temperature 216
7.9 Specific Heat 218
7.10 Plasmons 220
7.11 Surface-Enhanced Raman Spectroscopy 222
7.12 Phase Transitions 223
Problems 226
References 227
8. Electronic Properties 229
8.1 Ionic Solids 229
8.2 Covalently Bonded Solids 232
8.3 Metals 234
8.3.1 Effect of Lattice Parameter on Electronic Structure 235
8.3.2 Free-Electron Model 235
8.3.3 The Tight-Binding Model 239
8.4 Measurements of Electronic Structure of Nanoparticles 242
8.4.1 Semiconducting Nanoparticles 242
8.4.2 Organic Solids 248
8.4.3 Metals 250
Problems 251
9. Quantum Wells, Wires, and Dots 253
9.1 Introduction 253
9.2 Fabricating Quantum Nanostructures 253
9.2.1 Solution Fabrication 254
9.2.2 Lithography 257
9.3 Size and Dimensionality Effects 261
9.3.1 Size Effects 261
9.3.2 Size Effects on Conduction Electrons 263
9.3.3 Conduction Electrons and Dimensionality 264
9.3.4 Fermi Gas and Density of States 265
9.3.5 Potential Wells 268
9.3.6 Partial Confinement 272
9.3.7 Properties Dependent on Density of States 273
9.4 Excitons 275
9.5 Single-Electron Tunneling 276
9.6 Applications 280
9.6.1 Infrared Detectors 280
9.6.2 Quantum Dot Lasers 280
Problems 285
References 285
10. Carbon Nanostructures 287
10.1 Introduction 287
10.2 Carbon Molecules 287
10.2.1 Nature of the Carbon Bond 287
10.2.2 New Carbon Structures 289
10.3 Carbon Clusters 289
10.3.1 Small Carbon Clusters 289
10.3.2 Buckyball 292
10.3.3 The Structure of Molecular C60 293
10.3.4 Crystalline C60 296
10.3.5 Larger and Smaller Buckyballs 300
10.3.6 Buckyballs of Other Atoms 300
10.4 Carbon Nanotubes 301
10.4.1 Fabrication 301
10.4.2 Structure 304
10.4.3 Electronic Properties 306
10.4.4 Vibrational Properties 312
10.4.5 Functionalization 314
10.4.6 Doped Carbon Nanotubes 322
10.4.7 Mechanical Properties 325
10.5 Nanotube Composites 327
10.5.1 Polymer-Carbon Nanotube Composites 327
10.5.2 Metal-Carbon Nanotube Composites 329
10.6 Graphene Nanostructures 330
Problems 335
11. Bulk Nanostructured Materials 337
11.1 Solid Methods for Preparation of Disordered Nanostructures 337
11.1.1 Methods of Synthesis 337
11.1.2 Metal Nanocluster Composite Glasses 340
11.1.3 Porous Silicon 343
11.2 Nanocomposites 347
11.2.1 Layered Nanocomposites 347
11.2.2 Nanowire Composites 349
11.2.3 Composites of Nanoparticles 350
11.3 Nanostructured Crystals 351
11.3.1 Natural Nanocrystals 351
11.3.2 Crystals of Metal Nanoparticles 352
11.3.3 Arrays of Nanoparticles in Zeolites 355
11.3.4 Nanoparticle Lattices in Colloidal Suspensions 357
11.3.5 Computational Prediction of Cluster Lattices 358
11.4 Electrical Conduction in Bulk Nanostructured Materials 359
11.4.1 Bulk Materials Consisting of Nanosized Grains 359
11.4.2 Nanometer-Thick Amorphous Films 364
11.5 Other Properties 364
Problems 365
12. Mechanical Properties of Nanostructured Materials 367
12.1 Stress-Strain Behavior of Materials 367
12.2 Failure Mechanisms of Conventional Grain-Sized Materials 370
12.3 Mechanical Properties of Consolidated Nano-Grained Materials 371
12.4 Nanostructured Multilayers 374
12.5 Mechanical and Dynamical Properties of Nanosized Devices 376
12.5.1 General Considerations 376
12.5.2 Nanopendulum 378
12.5.3 Vibrations of a Nanometer String 380
12.5.4 The Nanospring 381
12.5.5 The Clamped Beam 382
12.5.6 The Challenges and Possibilities of Nanomechanical Sensors 385
12.5.7 Methods of Fabrication of Nanosized Devices 387
Problems 390
13. Magnetism in Nanostructures 393
13.1 Basics of Ferromagnetism 393
13.2 Behavior of Powders of Ferromagnetic Nanoparticles 398
13.2.1 Properties of a Single Ferromagnetic Nanoparticle 398
13.2.2 Dynamics of Individual Magnetic Nanoparticles 400
13.2.3 Measurements of Superparamagnetism and the Blocking Temperature 402
13.2.4 Nanopore Containment of Magnetic Particles 405
13.3 Ferrofluids 406
13.4 Bulk Nanostructured Magnetic Materials 413
13.4.1 Effect of Nanosized Grain Structure on Magnetic Properties 413
13.4.2 Magnetoresistive Materials 416
13.4.3 Carbon Nanostructured Ferromagnets 424
13.5 Antiferromagnetic Nanoparticles 429
Problems 430
14. Nanoelectronics, Spintronics, Molecular Electronics, and Photonics 433
14.1 Nanoelectronics 433
14.1.1 N and P Doping and PN Junctions 433
14.1.2 MOSFET 435
14.1.3 Scaling of MOSFETs 436
14.2 Spintronics 440
14.2.1 Definition and Examples of Spintronic Devices 440
14.2.2 Magnetic Storage and Spin Valves 440
14.2.3 Dilute Magnetic Semiconductors 445
14.3 Molecular Switches and Electronics 449
14.3.1 Molecular Switches 449
14.3.2 Molecular Electronics 453
14.3.3 Mechanism of Conduction through a Molecule 458
14.4 Photonic Crystals 459
Problems 465
Reference 466
15. Superconductivity in Nanomaterials 467
15.1 Introduction 467
15.2 Zero Resistance 467
15.2.1 The Superconducting Gap 469
15.2.2 Cooper Pairs 470
15.3 The Meissner Effect 472
15.3.1 Magnetic Field Exclusion 472
15.3.2 Type I and Type II Superconductors 474
15.4 Properties of Flux 478
15.4.1 Quantization of Flux 478
15.4.2 Vortex Configurations 479
15.4.3 Flux Creep and Flux Flow 480
15.4.4 Vortex Pinning 484
15.5 Dependence of Superconducting Properties on Size Effects 484
15.6 Resistivity and Sheet Resistance 484
15.7 Proximity Effect 488
15.8 Superconductors as Nanomaterials 490
15.9 Tunneling and Josephson Junctions 491
15.9.1 Tunneling 491
15.9.2 Weak Links 491
15.9.3 Josephson Effect 493
15.9.4 Josephson Junctions 494
15.9.5 Ultrasmall Josephson Junctions 494
15.10 Superconducting Quantum Interference Device (Squid) 495
15.11 Buckministerfullerenes 496
15.11.1 The Structure of C60 and Its Crystal 496
15.11.2 Alkali-Doped C60 496
15.11.3 Superconductivity in C60 497
Problems 498
References 499
Appendix A Formulas for Dimensionality 501
A.1 Introduction 501
A.2 Delocalization 501
A.3 Square and Parabolic Wells 502
A.4 Partial Confinement 503
Appendix B Tabulations of Semiconducting Material Properties 507
Appendix C Face-Centered Cubic and Hexagonal Close-Packed Nanoparticles 515
C.1 Introduction 515
C.2 Face-Centered Cubic Nanoparticles 515
C.3 Hexagonal Close-Packed Nanoparticles 519
Index 521