Nanostructured Conductive Polymers
Herausgeber: Eftekhari, Ali
Nanostructured Conductive Polymers
Herausgeber: Eftekhari, Ali
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Providing a vital link between nanotechnology and conductive polymers, this book covers advances in topics of this interdisciplinary area. In each chapter, there is a discussion of current research issues while reviewing the background of the topic. The selection of topics and contributors from around the globe make this text an outstanding resource for researchers involved in the field of nanomaterials or polymer materials design. The book is divided into three sections: From Conductive Polymers to Nanotechnology, Synthesis and Characterization, and Applications.
Andere Kunden interessierten sich auch für
- Tianyou ZhaiOne-Dimensional Nanostructures193,99 €
- Konrad SzacilowskiInfochemistry170,99 €
- Luigi NicolaisNanocomposites124,99 €
- Xinwei WangExperimental Micro/Nanoscale Thermal Transport154,99 €
- K. LuNanoparticulate Materials191,99 €
- Microfluidic Devices in Nanotechnology Handbook, 2 Volume Set322,99 €
- Progress in Nanotechnology224,99 €
-
-
-
Providing a vital link between nanotechnology and conductive polymers, this book covers advances in topics of this interdisciplinary area. In each chapter, there is a discussion of current research issues while reviewing the background of the topic. The selection of topics and contributors from around the globe make this text an outstanding resource for researchers involved in the field of nanomaterials or polymer materials design. The book is divided into three sections: From Conductive Polymers to Nanotechnology, Synthesis and Characterization, and Applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 800
- Erscheinungstermin: 2. August 2010
- Englisch
- Abmessung: 249mm x 173mm x 48mm
- Gewicht: 1497g
- ISBN-13: 9780470745854
- ISBN-10: 0470745851
- Artikelnr.: 28165235
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 800
- Erscheinungstermin: 2. August 2010
- Englisch
- Abmessung: 249mm x 173mm x 48mm
- Gewicht: 1497g
- ISBN-13: 9780470745854
- ISBN-10: 0470745851
- Artikelnr.: 28165235
Ali Eftekhari is Professor of Chemistry and Director of the Avicenna Institute of Technology in Cleveland (USA). He received his PhD at Trinity College (Ireland). From 2000 to 2002, he was a researcher at Nirvan Co. (USA) working on an environmental project under support of former Vice-President Al Gore. From 2002 to 2004, Professor Eftekhari was senior researcher at KICR (USA), working on a joint corporate project based in United States and Iran. For the next two years, he was Head of the Electrochemistry Division at the Materials and Energy Research Center in Iran. Since 2007, Ali Eftekhari has been Professor of Chemistry and Director of Avicenna Institute of Technology. He is the editor of four books including Nanostructured Materials in Electrochemistry (Wiley) and editor of the book Boltzmann Philosophy of Science. Professor Eftekhari is Editor of the Journal of Nanomaterials and has been chairman or on the Editorial Advisory Boards of several conferences. His research interests include electrochemistry, nanoscience and nanotechnology, statistical physics, condensed matter physics, philosophy, the history of science, management and science policy.
Preface xv Foreword xix List of Contributors xxi Part One 1 1 History of Conductive Polymers 3 J. Campbell Scott 1.1 Introduction 3 1.2 Archeology and Prehistory 7 1.3 The Dawn of the Modern Era 8 1.4 The Materials Revolution 12 1.5 Concluding Remarks 13 Acknowledgments 15 References 15 2 Polyaniline Nanostructures 19 Gordana
iri
-Marjanovi
2.1 Introduction 19 2.2 Preparation 21 2.2.1 Preparation of Polyaniline Nanofibers 21 2.2.2 Preparation of Polyaniline Nanotubes 42 2.2.3 Preparation of Miscellaneous Polyaniline Nanostructures 52 2.3 Structure and Properties 60 2.3.1 Structure and Properties of Polyaniline Nanofibers 60 2.3.2 Structure and Properties of Polyaniline Nanotubes 63 2.4 Processing and Applications 64 2.4.1 Processing 64 2.4.2 Applications 65 2.5 Conclusions and Outlook 74 References 74 3 Nanoscale Inhomogeneity of Conducting-Polymer-Based Materials 99 Alain Pailleret and Oleg Semenikhin 3.1 Introduction: Inhomogeneity and Nanostructured Materials 99 3.2 Direct Local Measurements of Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 101 3.2.1 Introduction 101 3.2.2 Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KFM), and Electric Force Microscopy (EFM) 103 3.2.3 Current-Sensing Atomic Force Microscopy (CS-AFM) 105 3.2.4 Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS) 109 3.2.5 Phase-Imaging Atomic Force Microscopy (PI-AFM) and High-Resolution Transmission Electron Microscopy (HRTEM): Studies of Local Crystallinity 112 3.2.6 Near-Field Scanning Optical Microscopy (NSOM) 124 3.3 In situ Studies of Conducting and Semiconducting Polymers: Electrochemical Atomic Force Microscopy (EC-AFM) and Electrochemical Scanning Tunneling Microscopy (EC-STM) 128 3.3.1 Introduction 128 3.3.2 EC-AFM Investigations of the Swelling/Deswelling of ECPs 129 3.3.3 EC-STM Investigations of the Swelling/Deswelling of ECPs 140 3.3.4 Scanning Electrochemical Microscopy (SECM) Investigations of ECPs 141 3.4 The Origin of the Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 144 References 151 Part Two 161 4 Nanostructured Conductive Polymers by Electrospinning 163 Ioannis S. Chronakis 4.1 Introduction to Electrospinning Technology 163 4.2 The Electrospinning Processing 164 4.3 Electrospinning Processing Parameters: Control of the Nanofiber Morphology 165 4.3.1 Solution Properties 165 4.3.2 Process Conditions 166 4.3.3 Ambient Conditions 167 4.4 Nanostructured Conductive Polymers by Electrospinning 168 4.4.1 Polyaniline (PANI) 168 4.4.2 Polypyrrole (PPy) 175 4.4.3 Polythiophenes (PThs) 179 4.4.4 Poly(p-phenylene vinylenes) (PPVs) 183 4.4.5 Electrospun Nanofibers from Other Conductive Polymers 186 4.5 Applications of Electrospun Nanostructured Conductive Polymers 187 4.5.1 Biomedical Applications 187 4.5.2 Sensors 194 4.5.3 Conductive Nanofibers in Electric and Electronic Applications 197 4.6 Conclusions 201 References 201 5 Composites Based on Conducting Polymers and Carbon Nanotubes 209 M. Baibarac, I. Baltog, and S. Lefrant 5.1 Introduction 209 5.2 Carbon Nanotubes 212 5.2.1 Synthesis of CNTs: Arc Discharge, Laser Ablation, Chemical Vapor Deposition 214 5.2.2 Purification 217 5.2.3 Separation Techniques for Metallic and Semiconducting Carbon Nanotubes 219 5.2.4 Vibrational Properties of Carbon Nanotubes 222 5.3 Synthesis of Composites Based on Conducting Polymers and Carbon Nanotubes 224 5.3.1 Polyaniline/Carbon Nanotubes 225 5.3.2 Polypyrrole/Carbon Nanotubes 228 5.3.3 Poly(3,4-ethylenedioxythiophene)/Carbon Nanotubes 229 5.3.4 Poly(2,2 0 -bithiophene)/Carbon Nanotubes 229 5.3.5 Poly(N-vinylcarbazole)/Carbon Nanotubes 230 5.3.6 Polyfluorenes/Carbon Nanotubes 231 5.3.7 Poly(p-phenylene) Vinylene/Carbon Nanotubes 231 5.3.8 Polyacetylene/Carbon Nanotubes 232 5.4 Vibrational Properties of Composites Based on Conducting Polymers and Carbon Nanotubes 233 5.4.1 Conducting Polymer/Carbon Nanotube Bilayer Structures 233 5.4.2 Covalently Functionalized Carbon Nanotubes with Conducting Polymers 233 5.4.3 Conducting Polymers Doped with Carbon Nanotubes 244 5.4.4 Noncovalent Functionalization of Carbon Nanotubes with Conducting Polymers 247 5.5 Conclusions 249 Acknowledgments 250 References 250 6 Inorganic-Based Nanocomposites of Conductive Polymers 261 Rabin Bissessur 6.1 Introduction 261 6.2 FeOCl 262 6.3 V 2 O 5 Systems 263 6.4 Vopo 4 .2h 2 O 273 6.5 MoO 3 274 6.6 Layered Phosphates and Phosphonates 277 6.7 Layered Rutiles 279 6.8 Layered perovskites 280 6.9 Layered Titanates 280 6.10 Graphite Oxide 281 6.11 Conclusions 283 Acknowledgements 284 References 284 7 Metallic-Based Nanocomposites of Conductive Polymers 289 Vessela Tsakova 7.1 Introduction 289 7.2 Oxidative Polymerization Combined with Metal-Ion Reduction (One-Pot Synthesis) 290 7.3 Nanocomposite Formation by Means of Pre-Synthesized Metal Nanoparticles 294 7.4 Metal Electrodeposition in Pre-Synthesized CPs 297 7.4.1 Size and Size Distribution of Electrodeposited Metal Particles 305 7.4.2 Spatial Distribution of Electrodeposited Metal Particles 308 7.4.3 Number Density of Electrodeposited Metal Particles 310 7.5 Chemical Reduction of Metal Ions in Pre-Polymerized CP Suspensions or Layers 312 7.5.1 Use of the Polymer Material as Reductant 312 7.5.2 Use of Additional Reductant 320 7.6 Metallic-Based CP Composites for Electrocatalytic and Electroanalytic Applications 321 List of Acronyms 325 References 325 8 Spectroscopy of Nanostructured Conducting Polymers 341 Gustavo M. do Nascimento and Marcelo A. de Souza 8.1 Synthetic Metals 341 8.2 Nanostructured Conducting Polymers 342 8.3 Spectroscopic Techniques 344 8.3.1 Vibronic Techniques (UV-vis-NIR, FTIR, Raman, Resonance Raman) 345 8.3.2 X-Ray Techniques (XANES, EXAFS AND XPS) 346 8.4 Spectroscopy of Nanostructured Conducting Polymers 349 8.4.1 Nanostructured Polyaniline and its Derivates 349 8.4.2 Nanostructured Poly(Pyrrole) 355 8.4.3 Nanostructured Poly(Thiophenes) 358 8.4.4 Nanostructured Poly(Acetylene) and Poly(Diacetylene) and their Derivates 361 8.5 Concluding Remarks 364 Acknowledgements 365 References 365 9 Atomic Force Microscopy Study of Conductive Polymers 375 Edgar Ap. Sanches, Osvaldo N. Oliveira Jr, and Fabio Lima Leite 9.1 Introduction 375 9.2 AFM Fundamentals and Applications 376 9.2.1 Basic Principles 376 9.2.2 Imaging Modes 377 9.2.3 Force Spectroscopy 399 9.3 Concluding Remarks 405 Acknowledgments 406 References 406 10 Single Conducting-Polymer Nanowires 411 Yixuan Chen and Yi Luo 10.1 Introduction 411 10.2 Fabrication of Single Conducting-Polymer Nanowires (CPNWs) 412 10.2.1 Lithographical Methods 412 10.2.2 Scanning-Probe-Based Techniques 418 10.2.3 Template-Guided Growth or Patterning 426 10.2.4 Other Methods 436 10.3 Transport Properties and Electrical Characterization 443 10.3.1 Background 443 10.3.2 Brief Summary of Transport in 3-D CP Materials 444 10.3.3 Conductivity of CP Nanowires, Nanofibers, and Nanotubes 446 10.3.4 Summary 449 10.4 Applications of Single Conducting Polymer Nanowires (CPNWs) 449 10.4.1 CPNW Chemical and Biological Sensors 450 10.4.2 CPNW Field-Effect Transistors 453 10.4.3 CPNW Optoelectronic Devices 455 10.5 Summary and Outlook 460 References 460 11 Conductive Polymer Micro- and Nanocontainers 467 Jiyong Huang and Zhixiang Wei 11.1 Introduction 467 11.2 Structures of Micro- and Nanocontainers 468 11.2.1 Hollow Spheres 468 11.2.2 Tubes 472 11.2.3 Others 474 11.3 Preparation Methods and Formation Mechanisms 478 11.3.1 Hard-Template Method 478 11.3.2 Soft-Template Method 482 11.3.3 Micro- and Nanofabrication Techniques 485 11.4 Properties and Applications of Micro- and Nanocontainers 486 11.4.1 Chemical and Electrical Properties 487 11.4.2 Encapsulation 488 11.4.3 Drug Delivery and Controlled Release 490 11.5 Conclusions 494 References 495 12 Magnetic and Electron Transport Behaviors of Conductive-Polymer Nanocomposites 503 Zhanhu Guo, Suying Wei, David Cocke, and Di Zhang 12.1 Introduction 503 12.2 Magnetic Polymer Nanocomposite Preparation 506 12.2.1 Solution-Based Oxidation Method 506 12.2.2 Electropolymerization Method 507 12.2.3 Two-Step Deposition Method 508 12.2.4 UV-Irradiation Technique 508 12.3 Physicochemical Property Characterization 509 12.4 Microstructure of the Conductive Polymer Nanocomposites 509 12.5 Interaction between the Nanoparticles and the Conductive-Polymer Matrix 510 12.6 Magnetic Properties of Conductive-Polymer Nanocomposites 512 12.7 Electron Transport in Conductive-Polymer Nanocomposites 515 12.8 Giant Magnetoresistance in Conductive-Polymer Nanocomposites 520 12.9 Summary 522 12.9.1 Materials Design Perspective 524 References 524 13 Charge Transfer and Charge Separation in Conjugated Polymer Solar Cells 531 Ian A. Howard, Neil C. Greenham, Agnese Abrusci, Richard H. Friend, and Sebastian Westenhoff 13.1 Introduction 531 13.1.1 Polymer: PCBM Solar Cells 532 13.1.2 Polymer: Polymer Solar Cells 533 13.1.3 Polymer: Inorganic Nanoparticle Solar Cells 534 13.2 Charge Transfer in Conjugated Polymers 534 13.2.1 Excitons as the Primary Photoexcitations 535 13.2.2 Charge Transfer at Semiconductor Heterojunctions 535 13.2.3 Charge Transport 537 13.2.4 Photoinduced Charge Transfer 538 13.2.5 Onsager-Braun Model of Charge-Transfer State Dissociation 540 13.2.6 Charge Formation from High-Lying Singlet States in a Pristine Polymer 541 13.2.7 Field-Assisted Charge Generation in Pristine Materials 541 13.2.8 Charge Generation in Donor: Acceptor Blends 542 13.2.9 Mechanisms of Charge-Transfer State Recombination 544 13.3 Charge Generation and Recombination in Organic Solar Cells with High Open-Circuit Voltages 545 13.3.1 Exciton Ionization at Polymer: Polymer Heterojunctions 546 13.3.2 Photoluminescence from Charge-Transfer States 547 13.3.3 The Nature of the Charge-Transfer States 549 13.3.4 Probing the Major Loss Mechanism in Organic Solar Cells with High Open-Circuit Voltages 550 13.3.5 Geminate Recombination of Interfacial Charge-Transfer States into Triplet Excitons 552 13.3.6 The Exchange Energy of Interfacial Charge-Transfer States in Semiconducting Polymer Blends 555 13.4 Conclusions and Outlook 555 Acknowledgements 556 References 556 Part Three 563 14 Nanostructured Conducting Polymers for (Electro)chemical Sensors 565 Anthony J. Killard 14.1 Introduction 565 14.2 Nanowires and Nanotubes 566 14.3 Nanogaps and Nanojunctions 568 14.4 Nanofibers and Nanocables 570 14.5 Nanofilms 572 14.6 Metallic Nanoparticle/Conducting-Polymer Nanocomposites 574 14.7 Metal-Oxide Nanoparticles/Conducting-Polymer Nanocomposites 575 14.8 Carbon Nanotube Nanocomposites 577 14.9 Nanoparticles 579 14.10 Nanoporous Templates 582 14.11 Application Summaries 583 14.12 Conclusions 593 References 594 15 Nanostructural Aspects of Conducting-Polymer Actuators 599 Paul A. Kilmartin and Jadranka Travas-Sejdic 15.1 Introduction 599 15.2 Mechanisms and Modes of Actuation 600 15.2.1 Ion Movement and Conducting-Polymer Electrochemistry 600 15.2.2 Bilayer and Trilayer Actuators 600 15.2.3 Linear Actuators and the Inclusion of Metal Contacts 602 15.2.4 Out-of-Plane Actuators 603 15.2.5 Effect of Synthesis Conditions 604 15.3 Modelling Mechanical Performance and Developing Device Applications 604 15.3.1 Modelling of Conducting-Polymer Actuation 605 15.3.2 Applications of Conducting-Polymer Actuators 607 15.4 Effect of Morphology and Nanostructure upon Actuation 610 15.4.1 Chain Alignment 610 15.4.2 Anisotropy 612 15.4.3 Porosity 614 15.4.4 Conformational Changes 614 15.5 Solvent and Ion Size Effects to Achieve Higher Actuation 615 15.5.1 Effect of Ion Size 615 15.5.2 Ionic Liquids 616 15.5.3 Ions Producing Large Actuation Strains 617 15.6 Nanostructured Composite Actuators 619 15.6.1 Blends of Two Conducting Polymers 619 15.6.2 Graphite 620 15.6.3 Carbon Nanotubes 620 15.6.4 Hydrogels 621 15.6.5 Other Interpenetrating Networks 621 15.7 Prospects for Nanostructured Conducting-Polymer Actuators 622 References 623 16 Electroactive Conducting Polymers for the Protection of Metals against Corrosion: from Micro- to Nanostructured Films 631 Pierre Camille Lacaze, Jalal Ghilane, Hyacinthe Randriamahazaka and Jean-Christophe Lacroix 16.1 Introduction 631 16.2 Protection Mechanisms Induced by Conducting Polymers 633 16.2.1 Displacement of the Electrochemical Interface 634 16.2.2 Ennobling the Metal Surface 637 16.2.3 Self-healing Effect with Doping Anions as Corrosion Inhibitors 645 16.2.4 Barrier Effect of the Polymer 650 16.3 Conducting-Polymer Coating Techniques for Usual Oxidizable Metals: Performances of Conducting-Polymer-Based Micron-Thick Films for Protection against Corrosion 656 16.3.1 Coatings Consisting of a Conducting Primer Deposited by Electropolymerization 656 16.3.2 Coatings Made from Conducting-Polymer Formulations 662 16.4 Nanostructured Conducting-Polymer Coatings and Anticorrosion Protection 665 16.4.1 Improving ECP Adhesion to Oxidizable Metals 666 16.4.2 Nanostructured Surfaces Displaying Superhydrophobic Properties 667 16.5 Conclusions 671 Acknowledgement 672 References 672 17 Electrocatalysis by Nanostructured Conducting Polymers 681 Shaolin Mu and Ya Zhang 17.1 Introduction 681 17.2 Electrochemical Synthetic Techniques of Nanostructured Conducting Polymers 682 17.2.1 Synthesis by Cyclic Voltammetry 682 17.2.2 Synthesis by Potentiostat 686 17.2.3 Synthesis by Galvanostat 690 17.3 Electrocatalysis at Nanostructured Conducting-Polymer Electrodes 692 17.3.1 Electrocatalysis by Pure Nanostructured Conducting Polymers 692 17.3.2 Electrocatalysis at the Electrodes of Conducting-Polymer Nanocomposites 695 17.4 Conclusion 700 References 701 18 Nanostructured Conductive Polymers as Biomaterials 707 Rylie A. Green, Sungchul Baek, Nigel H. Lovell, and Laura A. Poole-Warren 18.1 Introduction 707 18.2 Biomedical Applications for Conductive Polymers 708 18.2.1 Electrode Coatings 708 18.2.2 Alternate Applications 709 18.3 Polymer Design Considerations 711 18.3.1 Conduction Mechanism 711 18.3.2 Conventional Components 712 18.3.3 Biofunctional Additives 714 18.4 Fabrication of Nanostructured Conductive Polymers 715 18.4.1 Electrodeposition 717 18.4.2 Chemical Synthesis 718 18.4.3 Alternate Processing Techniques 720 18.5 Polymer Characterization 724 18.5.1 Surface Properties 724 18.5.2 Mechanical Properties 725 18.5.3 Electrical Properties 725 18.5.4 Biological Performance 726 18.6 Interfacing with Neural Tissue 727 18.7 Conclusions 728 References 729 19 Nanocomposites of Polymers Made Conductive by Nanofillers 737 Haiping Hong, Dustin Thomas, Mark Horton, Yijiang Lu, Jing Li, Pauline Smith, and Walter Roy 19.1 Introduction 737 19.2 Experimental 742 19.2.1 Materials and Equipment 742 19.2.2 Preparation of Nanocomposite (Nanotube Grease) 745 19.3 Results and Discussion 748 19.3.1 Thermal and Electrical Properties of Nanocomposites (Nanotube Greases) 748 19.3.2 Rheological Investigation of Nanocomposite (Nanotube Grease) 750 19.3.3 Nanocomposites (Nanotube Greases) with Magnetically Sensitive Nanoparticles 754 19.3.4 Electrical Conductivities of Various Nanofillers (Nanotubes) 759 19.4 Conclusion 761 Acknowledgments 761 References 762 Index 765
iri
-Marjanovi
2.1 Introduction 19 2.2 Preparation 21 2.2.1 Preparation of Polyaniline Nanofibers 21 2.2.2 Preparation of Polyaniline Nanotubes 42 2.2.3 Preparation of Miscellaneous Polyaniline Nanostructures 52 2.3 Structure and Properties 60 2.3.1 Structure and Properties of Polyaniline Nanofibers 60 2.3.2 Structure and Properties of Polyaniline Nanotubes 63 2.4 Processing and Applications 64 2.4.1 Processing 64 2.4.2 Applications 65 2.5 Conclusions and Outlook 74 References 74 3 Nanoscale Inhomogeneity of Conducting-Polymer-Based Materials 99 Alain Pailleret and Oleg Semenikhin 3.1 Introduction: Inhomogeneity and Nanostructured Materials 99 3.2 Direct Local Measurements of Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 101 3.2.1 Introduction 101 3.2.2 Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KFM), and Electric Force Microscopy (EFM) 103 3.2.3 Current-Sensing Atomic Force Microscopy (CS-AFM) 105 3.2.4 Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS) 109 3.2.5 Phase-Imaging Atomic Force Microscopy (PI-AFM) and High-Resolution Transmission Electron Microscopy (HRTEM): Studies of Local Crystallinity 112 3.2.6 Near-Field Scanning Optical Microscopy (NSOM) 124 3.3 In situ Studies of Conducting and Semiconducting Polymers: Electrochemical Atomic Force Microscopy (EC-AFM) and Electrochemical Scanning Tunneling Microscopy (EC-STM) 128 3.3.1 Introduction 128 3.3.2 EC-AFM Investigations of the Swelling/Deswelling of ECPs 129 3.3.3 EC-STM Investigations of the Swelling/Deswelling of ECPs 140 3.3.4 Scanning Electrochemical Microscopy (SECM) Investigations of ECPs 141 3.4 The Origin of the Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 144 References 151 Part Two 161 4 Nanostructured Conductive Polymers by Electrospinning 163 Ioannis S. Chronakis 4.1 Introduction to Electrospinning Technology 163 4.2 The Electrospinning Processing 164 4.3 Electrospinning Processing Parameters: Control of the Nanofiber Morphology 165 4.3.1 Solution Properties 165 4.3.2 Process Conditions 166 4.3.3 Ambient Conditions 167 4.4 Nanostructured Conductive Polymers by Electrospinning 168 4.4.1 Polyaniline (PANI) 168 4.4.2 Polypyrrole (PPy) 175 4.4.3 Polythiophenes (PThs) 179 4.4.4 Poly(p-phenylene vinylenes) (PPVs) 183 4.4.5 Electrospun Nanofibers from Other Conductive Polymers 186 4.5 Applications of Electrospun Nanostructured Conductive Polymers 187 4.5.1 Biomedical Applications 187 4.5.2 Sensors 194 4.5.3 Conductive Nanofibers in Electric and Electronic Applications 197 4.6 Conclusions 201 References 201 5 Composites Based on Conducting Polymers and Carbon Nanotubes 209 M. Baibarac, I. Baltog, and S. Lefrant 5.1 Introduction 209 5.2 Carbon Nanotubes 212 5.2.1 Synthesis of CNTs: Arc Discharge, Laser Ablation, Chemical Vapor Deposition 214 5.2.2 Purification 217 5.2.3 Separation Techniques for Metallic and Semiconducting Carbon Nanotubes 219 5.2.4 Vibrational Properties of Carbon Nanotubes 222 5.3 Synthesis of Composites Based on Conducting Polymers and Carbon Nanotubes 224 5.3.1 Polyaniline/Carbon Nanotubes 225 5.3.2 Polypyrrole/Carbon Nanotubes 228 5.3.3 Poly(3,4-ethylenedioxythiophene)/Carbon Nanotubes 229 5.3.4 Poly(2,2 0 -bithiophene)/Carbon Nanotubes 229 5.3.5 Poly(N-vinylcarbazole)/Carbon Nanotubes 230 5.3.6 Polyfluorenes/Carbon Nanotubes 231 5.3.7 Poly(p-phenylene) Vinylene/Carbon Nanotubes 231 5.3.8 Polyacetylene/Carbon Nanotubes 232 5.4 Vibrational Properties of Composites Based on Conducting Polymers and Carbon Nanotubes 233 5.4.1 Conducting Polymer/Carbon Nanotube Bilayer Structures 233 5.4.2 Covalently Functionalized Carbon Nanotubes with Conducting Polymers 233 5.4.3 Conducting Polymers Doped with Carbon Nanotubes 244 5.4.4 Noncovalent Functionalization of Carbon Nanotubes with Conducting Polymers 247 5.5 Conclusions 249 Acknowledgments 250 References 250 6 Inorganic-Based Nanocomposites of Conductive Polymers 261 Rabin Bissessur 6.1 Introduction 261 6.2 FeOCl 262 6.3 V 2 O 5 Systems 263 6.4 Vopo 4 .2h 2 O 273 6.5 MoO 3 274 6.6 Layered Phosphates and Phosphonates 277 6.7 Layered Rutiles 279 6.8 Layered perovskites 280 6.9 Layered Titanates 280 6.10 Graphite Oxide 281 6.11 Conclusions 283 Acknowledgements 284 References 284 7 Metallic-Based Nanocomposites of Conductive Polymers 289 Vessela Tsakova 7.1 Introduction 289 7.2 Oxidative Polymerization Combined with Metal-Ion Reduction (One-Pot Synthesis) 290 7.3 Nanocomposite Formation by Means of Pre-Synthesized Metal Nanoparticles 294 7.4 Metal Electrodeposition in Pre-Synthesized CPs 297 7.4.1 Size and Size Distribution of Electrodeposited Metal Particles 305 7.4.2 Spatial Distribution of Electrodeposited Metal Particles 308 7.4.3 Number Density of Electrodeposited Metal Particles 310 7.5 Chemical Reduction of Metal Ions in Pre-Polymerized CP Suspensions or Layers 312 7.5.1 Use of the Polymer Material as Reductant 312 7.5.2 Use of Additional Reductant 320 7.6 Metallic-Based CP Composites for Electrocatalytic and Electroanalytic Applications 321 List of Acronyms 325 References 325 8 Spectroscopy of Nanostructured Conducting Polymers 341 Gustavo M. do Nascimento and Marcelo A. de Souza 8.1 Synthetic Metals 341 8.2 Nanostructured Conducting Polymers 342 8.3 Spectroscopic Techniques 344 8.3.1 Vibronic Techniques (UV-vis-NIR, FTIR, Raman, Resonance Raman) 345 8.3.2 X-Ray Techniques (XANES, EXAFS AND XPS) 346 8.4 Spectroscopy of Nanostructured Conducting Polymers 349 8.4.1 Nanostructured Polyaniline and its Derivates 349 8.4.2 Nanostructured Poly(Pyrrole) 355 8.4.3 Nanostructured Poly(Thiophenes) 358 8.4.4 Nanostructured Poly(Acetylene) and Poly(Diacetylene) and their Derivates 361 8.5 Concluding Remarks 364 Acknowledgements 365 References 365 9 Atomic Force Microscopy Study of Conductive Polymers 375 Edgar Ap. Sanches, Osvaldo N. Oliveira Jr, and Fabio Lima Leite 9.1 Introduction 375 9.2 AFM Fundamentals and Applications 376 9.2.1 Basic Principles 376 9.2.2 Imaging Modes 377 9.2.3 Force Spectroscopy 399 9.3 Concluding Remarks 405 Acknowledgments 406 References 406 10 Single Conducting-Polymer Nanowires 411 Yixuan Chen and Yi Luo 10.1 Introduction 411 10.2 Fabrication of Single Conducting-Polymer Nanowires (CPNWs) 412 10.2.1 Lithographical Methods 412 10.2.2 Scanning-Probe-Based Techniques 418 10.2.3 Template-Guided Growth or Patterning 426 10.2.4 Other Methods 436 10.3 Transport Properties and Electrical Characterization 443 10.3.1 Background 443 10.3.2 Brief Summary of Transport in 3-D CP Materials 444 10.3.3 Conductivity of CP Nanowires, Nanofibers, and Nanotubes 446 10.3.4 Summary 449 10.4 Applications of Single Conducting Polymer Nanowires (CPNWs) 449 10.4.1 CPNW Chemical and Biological Sensors 450 10.4.2 CPNW Field-Effect Transistors 453 10.4.3 CPNW Optoelectronic Devices 455 10.5 Summary and Outlook 460 References 460 11 Conductive Polymer Micro- and Nanocontainers 467 Jiyong Huang and Zhixiang Wei 11.1 Introduction 467 11.2 Structures of Micro- and Nanocontainers 468 11.2.1 Hollow Spheres 468 11.2.2 Tubes 472 11.2.3 Others 474 11.3 Preparation Methods and Formation Mechanisms 478 11.3.1 Hard-Template Method 478 11.3.2 Soft-Template Method 482 11.3.3 Micro- and Nanofabrication Techniques 485 11.4 Properties and Applications of Micro- and Nanocontainers 486 11.4.1 Chemical and Electrical Properties 487 11.4.2 Encapsulation 488 11.4.3 Drug Delivery and Controlled Release 490 11.5 Conclusions 494 References 495 12 Magnetic and Electron Transport Behaviors of Conductive-Polymer Nanocomposites 503 Zhanhu Guo, Suying Wei, David Cocke, and Di Zhang 12.1 Introduction 503 12.2 Magnetic Polymer Nanocomposite Preparation 506 12.2.1 Solution-Based Oxidation Method 506 12.2.2 Electropolymerization Method 507 12.2.3 Two-Step Deposition Method 508 12.2.4 UV-Irradiation Technique 508 12.3 Physicochemical Property Characterization 509 12.4 Microstructure of the Conductive Polymer Nanocomposites 509 12.5 Interaction between the Nanoparticles and the Conductive-Polymer Matrix 510 12.6 Magnetic Properties of Conductive-Polymer Nanocomposites 512 12.7 Electron Transport in Conductive-Polymer Nanocomposites 515 12.8 Giant Magnetoresistance in Conductive-Polymer Nanocomposites 520 12.9 Summary 522 12.9.1 Materials Design Perspective 524 References 524 13 Charge Transfer and Charge Separation in Conjugated Polymer Solar Cells 531 Ian A. Howard, Neil C. Greenham, Agnese Abrusci, Richard H. Friend, and Sebastian Westenhoff 13.1 Introduction 531 13.1.1 Polymer: PCBM Solar Cells 532 13.1.2 Polymer: Polymer Solar Cells 533 13.1.3 Polymer: Inorganic Nanoparticle Solar Cells 534 13.2 Charge Transfer in Conjugated Polymers 534 13.2.1 Excitons as the Primary Photoexcitations 535 13.2.2 Charge Transfer at Semiconductor Heterojunctions 535 13.2.3 Charge Transport 537 13.2.4 Photoinduced Charge Transfer 538 13.2.5 Onsager-Braun Model of Charge-Transfer State Dissociation 540 13.2.6 Charge Formation from High-Lying Singlet States in a Pristine Polymer 541 13.2.7 Field-Assisted Charge Generation in Pristine Materials 541 13.2.8 Charge Generation in Donor: Acceptor Blends 542 13.2.9 Mechanisms of Charge-Transfer State Recombination 544 13.3 Charge Generation and Recombination in Organic Solar Cells with High Open-Circuit Voltages 545 13.3.1 Exciton Ionization at Polymer: Polymer Heterojunctions 546 13.3.2 Photoluminescence from Charge-Transfer States 547 13.3.3 The Nature of the Charge-Transfer States 549 13.3.4 Probing the Major Loss Mechanism in Organic Solar Cells with High Open-Circuit Voltages 550 13.3.5 Geminate Recombination of Interfacial Charge-Transfer States into Triplet Excitons 552 13.3.6 The Exchange Energy of Interfacial Charge-Transfer States in Semiconducting Polymer Blends 555 13.4 Conclusions and Outlook 555 Acknowledgements 556 References 556 Part Three 563 14 Nanostructured Conducting Polymers for (Electro)chemical Sensors 565 Anthony J. Killard 14.1 Introduction 565 14.2 Nanowires and Nanotubes 566 14.3 Nanogaps and Nanojunctions 568 14.4 Nanofibers and Nanocables 570 14.5 Nanofilms 572 14.6 Metallic Nanoparticle/Conducting-Polymer Nanocomposites 574 14.7 Metal-Oxide Nanoparticles/Conducting-Polymer Nanocomposites 575 14.8 Carbon Nanotube Nanocomposites 577 14.9 Nanoparticles 579 14.10 Nanoporous Templates 582 14.11 Application Summaries 583 14.12 Conclusions 593 References 594 15 Nanostructural Aspects of Conducting-Polymer Actuators 599 Paul A. Kilmartin and Jadranka Travas-Sejdic 15.1 Introduction 599 15.2 Mechanisms and Modes of Actuation 600 15.2.1 Ion Movement and Conducting-Polymer Electrochemistry 600 15.2.2 Bilayer and Trilayer Actuators 600 15.2.3 Linear Actuators and the Inclusion of Metal Contacts 602 15.2.4 Out-of-Plane Actuators 603 15.2.5 Effect of Synthesis Conditions 604 15.3 Modelling Mechanical Performance and Developing Device Applications 604 15.3.1 Modelling of Conducting-Polymer Actuation 605 15.3.2 Applications of Conducting-Polymer Actuators 607 15.4 Effect of Morphology and Nanostructure upon Actuation 610 15.4.1 Chain Alignment 610 15.4.2 Anisotropy 612 15.4.3 Porosity 614 15.4.4 Conformational Changes 614 15.5 Solvent and Ion Size Effects to Achieve Higher Actuation 615 15.5.1 Effect of Ion Size 615 15.5.2 Ionic Liquids 616 15.5.3 Ions Producing Large Actuation Strains 617 15.6 Nanostructured Composite Actuators 619 15.6.1 Blends of Two Conducting Polymers 619 15.6.2 Graphite 620 15.6.3 Carbon Nanotubes 620 15.6.4 Hydrogels 621 15.6.5 Other Interpenetrating Networks 621 15.7 Prospects for Nanostructured Conducting-Polymer Actuators 622 References 623 16 Electroactive Conducting Polymers for the Protection of Metals against Corrosion: from Micro- to Nanostructured Films 631 Pierre Camille Lacaze, Jalal Ghilane, Hyacinthe Randriamahazaka and Jean-Christophe Lacroix 16.1 Introduction 631 16.2 Protection Mechanisms Induced by Conducting Polymers 633 16.2.1 Displacement of the Electrochemical Interface 634 16.2.2 Ennobling the Metal Surface 637 16.2.3 Self-healing Effect with Doping Anions as Corrosion Inhibitors 645 16.2.4 Barrier Effect of the Polymer 650 16.3 Conducting-Polymer Coating Techniques for Usual Oxidizable Metals: Performances of Conducting-Polymer-Based Micron-Thick Films for Protection against Corrosion 656 16.3.1 Coatings Consisting of a Conducting Primer Deposited by Electropolymerization 656 16.3.2 Coatings Made from Conducting-Polymer Formulations 662 16.4 Nanostructured Conducting-Polymer Coatings and Anticorrosion Protection 665 16.4.1 Improving ECP Adhesion to Oxidizable Metals 666 16.4.2 Nanostructured Surfaces Displaying Superhydrophobic Properties 667 16.5 Conclusions 671 Acknowledgement 672 References 672 17 Electrocatalysis by Nanostructured Conducting Polymers 681 Shaolin Mu and Ya Zhang 17.1 Introduction 681 17.2 Electrochemical Synthetic Techniques of Nanostructured Conducting Polymers 682 17.2.1 Synthesis by Cyclic Voltammetry 682 17.2.2 Synthesis by Potentiostat 686 17.2.3 Synthesis by Galvanostat 690 17.3 Electrocatalysis at Nanostructured Conducting-Polymer Electrodes 692 17.3.1 Electrocatalysis by Pure Nanostructured Conducting Polymers 692 17.3.2 Electrocatalysis at the Electrodes of Conducting-Polymer Nanocomposites 695 17.4 Conclusion 700 References 701 18 Nanostructured Conductive Polymers as Biomaterials 707 Rylie A. Green, Sungchul Baek, Nigel H. Lovell, and Laura A. Poole-Warren 18.1 Introduction 707 18.2 Biomedical Applications for Conductive Polymers 708 18.2.1 Electrode Coatings 708 18.2.2 Alternate Applications 709 18.3 Polymer Design Considerations 711 18.3.1 Conduction Mechanism 711 18.3.2 Conventional Components 712 18.3.3 Biofunctional Additives 714 18.4 Fabrication of Nanostructured Conductive Polymers 715 18.4.1 Electrodeposition 717 18.4.2 Chemical Synthesis 718 18.4.3 Alternate Processing Techniques 720 18.5 Polymer Characterization 724 18.5.1 Surface Properties 724 18.5.2 Mechanical Properties 725 18.5.3 Electrical Properties 725 18.5.4 Biological Performance 726 18.6 Interfacing with Neural Tissue 727 18.7 Conclusions 728 References 729 19 Nanocomposites of Polymers Made Conductive by Nanofillers 737 Haiping Hong, Dustin Thomas, Mark Horton, Yijiang Lu, Jing Li, Pauline Smith, and Walter Roy 19.1 Introduction 737 19.2 Experimental 742 19.2.1 Materials and Equipment 742 19.2.2 Preparation of Nanocomposite (Nanotube Grease) 745 19.3 Results and Discussion 748 19.3.1 Thermal and Electrical Properties of Nanocomposites (Nanotube Greases) 748 19.3.2 Rheological Investigation of Nanocomposite (Nanotube Grease) 750 19.3.3 Nanocomposites (Nanotube Greases) with Magnetically Sensitive Nanoparticles 754 19.3.4 Electrical Conductivities of Various Nanofillers (Nanotubes) 759 19.4 Conclusion 761 Acknowledgments 761 References 762 Index 765
Preface xv Foreword xix List of Contributors xxi Part One 1 1 History of Conductive Polymers 3 J. Campbell Scott 1.1 Introduction 3 1.2 Archeology and Prehistory 7 1.3 The Dawn of the Modern Era 8 1.4 The Materials Revolution 12 1.5 Concluding Remarks 13 Acknowledgments 15 References 15 2 Polyaniline Nanostructures 19 Gordana
iri
-Marjanovi
2.1 Introduction 19 2.2 Preparation 21 2.2.1 Preparation of Polyaniline Nanofibers 21 2.2.2 Preparation of Polyaniline Nanotubes 42 2.2.3 Preparation of Miscellaneous Polyaniline Nanostructures 52 2.3 Structure and Properties 60 2.3.1 Structure and Properties of Polyaniline Nanofibers 60 2.3.2 Structure and Properties of Polyaniline Nanotubes 63 2.4 Processing and Applications 64 2.4.1 Processing 64 2.4.2 Applications 65 2.5 Conclusions and Outlook 74 References 74 3 Nanoscale Inhomogeneity of Conducting-Polymer-Based Materials 99 Alain Pailleret and Oleg Semenikhin 3.1 Introduction: Inhomogeneity and Nanostructured Materials 99 3.2 Direct Local Measurements of Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 101 3.2.1 Introduction 101 3.2.2 Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KFM), and Electric Force Microscopy (EFM) 103 3.2.3 Current-Sensing Atomic Force Microscopy (CS-AFM) 105 3.2.4 Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS) 109 3.2.5 Phase-Imaging Atomic Force Microscopy (PI-AFM) and High-Resolution Transmission Electron Microscopy (HRTEM): Studies of Local Crystallinity 112 3.2.6 Near-Field Scanning Optical Microscopy (NSOM) 124 3.3 In situ Studies of Conducting and Semiconducting Polymers: Electrochemical Atomic Force Microscopy (EC-AFM) and Electrochemical Scanning Tunneling Microscopy (EC-STM) 128 3.3.1 Introduction 128 3.3.2 EC-AFM Investigations of the Swelling/Deswelling of ECPs 129 3.3.3 EC-STM Investigations of the Swelling/Deswelling of ECPs 140 3.3.4 Scanning Electrochemical Microscopy (SECM) Investigations of ECPs 141 3.4 The Origin of the Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 144 References 151 Part Two 161 4 Nanostructured Conductive Polymers by Electrospinning 163 Ioannis S. Chronakis 4.1 Introduction to Electrospinning Technology 163 4.2 The Electrospinning Processing 164 4.3 Electrospinning Processing Parameters: Control of the Nanofiber Morphology 165 4.3.1 Solution Properties 165 4.3.2 Process Conditions 166 4.3.3 Ambient Conditions 167 4.4 Nanostructured Conductive Polymers by Electrospinning 168 4.4.1 Polyaniline (PANI) 168 4.4.2 Polypyrrole (PPy) 175 4.4.3 Polythiophenes (PThs) 179 4.4.4 Poly(p-phenylene vinylenes) (PPVs) 183 4.4.5 Electrospun Nanofibers from Other Conductive Polymers 186 4.5 Applications of Electrospun Nanostructured Conductive Polymers 187 4.5.1 Biomedical Applications 187 4.5.2 Sensors 194 4.5.3 Conductive Nanofibers in Electric and Electronic Applications 197 4.6 Conclusions 201 References 201 5 Composites Based on Conducting Polymers and Carbon Nanotubes 209 M. Baibarac, I. Baltog, and S. Lefrant 5.1 Introduction 209 5.2 Carbon Nanotubes 212 5.2.1 Synthesis of CNTs: Arc Discharge, Laser Ablation, Chemical Vapor Deposition 214 5.2.2 Purification 217 5.2.3 Separation Techniques for Metallic and Semiconducting Carbon Nanotubes 219 5.2.4 Vibrational Properties of Carbon Nanotubes 222 5.3 Synthesis of Composites Based on Conducting Polymers and Carbon Nanotubes 224 5.3.1 Polyaniline/Carbon Nanotubes 225 5.3.2 Polypyrrole/Carbon Nanotubes 228 5.3.3 Poly(3,4-ethylenedioxythiophene)/Carbon Nanotubes 229 5.3.4 Poly(2,2 0 -bithiophene)/Carbon Nanotubes 229 5.3.5 Poly(N-vinylcarbazole)/Carbon Nanotubes 230 5.3.6 Polyfluorenes/Carbon Nanotubes 231 5.3.7 Poly(p-phenylene) Vinylene/Carbon Nanotubes 231 5.3.8 Polyacetylene/Carbon Nanotubes 232 5.4 Vibrational Properties of Composites Based on Conducting Polymers and Carbon Nanotubes 233 5.4.1 Conducting Polymer/Carbon Nanotube Bilayer Structures 233 5.4.2 Covalently Functionalized Carbon Nanotubes with Conducting Polymers 233 5.4.3 Conducting Polymers Doped with Carbon Nanotubes 244 5.4.4 Noncovalent Functionalization of Carbon Nanotubes with Conducting Polymers 247 5.5 Conclusions 249 Acknowledgments 250 References 250 6 Inorganic-Based Nanocomposites of Conductive Polymers 261 Rabin Bissessur 6.1 Introduction 261 6.2 FeOCl 262 6.3 V 2 O 5 Systems 263 6.4 Vopo 4 .2h 2 O 273 6.5 MoO 3 274 6.6 Layered Phosphates and Phosphonates 277 6.7 Layered Rutiles 279 6.8 Layered perovskites 280 6.9 Layered Titanates 280 6.10 Graphite Oxide 281 6.11 Conclusions 283 Acknowledgements 284 References 284 7 Metallic-Based Nanocomposites of Conductive Polymers 289 Vessela Tsakova 7.1 Introduction 289 7.2 Oxidative Polymerization Combined with Metal-Ion Reduction (One-Pot Synthesis) 290 7.3 Nanocomposite Formation by Means of Pre-Synthesized Metal Nanoparticles 294 7.4 Metal Electrodeposition in Pre-Synthesized CPs 297 7.4.1 Size and Size Distribution of Electrodeposited Metal Particles 305 7.4.2 Spatial Distribution of Electrodeposited Metal Particles 308 7.4.3 Number Density of Electrodeposited Metal Particles 310 7.5 Chemical Reduction of Metal Ions in Pre-Polymerized CP Suspensions or Layers 312 7.5.1 Use of the Polymer Material as Reductant 312 7.5.2 Use of Additional Reductant 320 7.6 Metallic-Based CP Composites for Electrocatalytic and Electroanalytic Applications 321 List of Acronyms 325 References 325 8 Spectroscopy of Nanostructured Conducting Polymers 341 Gustavo M. do Nascimento and Marcelo A. de Souza 8.1 Synthetic Metals 341 8.2 Nanostructured Conducting Polymers 342 8.3 Spectroscopic Techniques 344 8.3.1 Vibronic Techniques (UV-vis-NIR, FTIR, Raman, Resonance Raman) 345 8.3.2 X-Ray Techniques (XANES, EXAFS AND XPS) 346 8.4 Spectroscopy of Nanostructured Conducting Polymers 349 8.4.1 Nanostructured Polyaniline and its Derivates 349 8.4.2 Nanostructured Poly(Pyrrole) 355 8.4.3 Nanostructured Poly(Thiophenes) 358 8.4.4 Nanostructured Poly(Acetylene) and Poly(Diacetylene) and their Derivates 361 8.5 Concluding Remarks 364 Acknowledgements 365 References 365 9 Atomic Force Microscopy Study of Conductive Polymers 375 Edgar Ap. Sanches, Osvaldo N. Oliveira Jr, and Fabio Lima Leite 9.1 Introduction 375 9.2 AFM Fundamentals and Applications 376 9.2.1 Basic Principles 376 9.2.2 Imaging Modes 377 9.2.3 Force Spectroscopy 399 9.3 Concluding Remarks 405 Acknowledgments 406 References 406 10 Single Conducting-Polymer Nanowires 411 Yixuan Chen and Yi Luo 10.1 Introduction 411 10.2 Fabrication of Single Conducting-Polymer Nanowires (CPNWs) 412 10.2.1 Lithographical Methods 412 10.2.2 Scanning-Probe-Based Techniques 418 10.2.3 Template-Guided Growth or Patterning 426 10.2.4 Other Methods 436 10.3 Transport Properties and Electrical Characterization 443 10.3.1 Background 443 10.3.2 Brief Summary of Transport in 3-D CP Materials 444 10.3.3 Conductivity of CP Nanowires, Nanofibers, and Nanotubes 446 10.3.4 Summary 449 10.4 Applications of Single Conducting Polymer Nanowires (CPNWs) 449 10.4.1 CPNW Chemical and Biological Sensors 450 10.4.2 CPNW Field-Effect Transistors 453 10.4.3 CPNW Optoelectronic Devices 455 10.5 Summary and Outlook 460 References 460 11 Conductive Polymer Micro- and Nanocontainers 467 Jiyong Huang and Zhixiang Wei 11.1 Introduction 467 11.2 Structures of Micro- and Nanocontainers 468 11.2.1 Hollow Spheres 468 11.2.2 Tubes 472 11.2.3 Others 474 11.3 Preparation Methods and Formation Mechanisms 478 11.3.1 Hard-Template Method 478 11.3.2 Soft-Template Method 482 11.3.3 Micro- and Nanofabrication Techniques 485 11.4 Properties and Applications of Micro- and Nanocontainers 486 11.4.1 Chemical and Electrical Properties 487 11.4.2 Encapsulation 488 11.4.3 Drug Delivery and Controlled Release 490 11.5 Conclusions 494 References 495 12 Magnetic and Electron Transport Behaviors of Conductive-Polymer Nanocomposites 503 Zhanhu Guo, Suying Wei, David Cocke, and Di Zhang 12.1 Introduction 503 12.2 Magnetic Polymer Nanocomposite Preparation 506 12.2.1 Solution-Based Oxidation Method 506 12.2.2 Electropolymerization Method 507 12.2.3 Two-Step Deposition Method 508 12.2.4 UV-Irradiation Technique 508 12.3 Physicochemical Property Characterization 509 12.4 Microstructure of the Conductive Polymer Nanocomposites 509 12.5 Interaction between the Nanoparticles and the Conductive-Polymer Matrix 510 12.6 Magnetic Properties of Conductive-Polymer Nanocomposites 512 12.7 Electron Transport in Conductive-Polymer Nanocomposites 515 12.8 Giant Magnetoresistance in Conductive-Polymer Nanocomposites 520 12.9 Summary 522 12.9.1 Materials Design Perspective 524 References 524 13 Charge Transfer and Charge Separation in Conjugated Polymer Solar Cells 531 Ian A. Howard, Neil C. Greenham, Agnese Abrusci, Richard H. Friend, and Sebastian Westenhoff 13.1 Introduction 531 13.1.1 Polymer: PCBM Solar Cells 532 13.1.2 Polymer: Polymer Solar Cells 533 13.1.3 Polymer: Inorganic Nanoparticle Solar Cells 534 13.2 Charge Transfer in Conjugated Polymers 534 13.2.1 Excitons as the Primary Photoexcitations 535 13.2.2 Charge Transfer at Semiconductor Heterojunctions 535 13.2.3 Charge Transport 537 13.2.4 Photoinduced Charge Transfer 538 13.2.5 Onsager-Braun Model of Charge-Transfer State Dissociation 540 13.2.6 Charge Formation from High-Lying Singlet States in a Pristine Polymer 541 13.2.7 Field-Assisted Charge Generation in Pristine Materials 541 13.2.8 Charge Generation in Donor: Acceptor Blends 542 13.2.9 Mechanisms of Charge-Transfer State Recombination 544 13.3 Charge Generation and Recombination in Organic Solar Cells with High Open-Circuit Voltages 545 13.3.1 Exciton Ionization at Polymer: Polymer Heterojunctions 546 13.3.2 Photoluminescence from Charge-Transfer States 547 13.3.3 The Nature of the Charge-Transfer States 549 13.3.4 Probing the Major Loss Mechanism in Organic Solar Cells with High Open-Circuit Voltages 550 13.3.5 Geminate Recombination of Interfacial Charge-Transfer States into Triplet Excitons 552 13.3.6 The Exchange Energy of Interfacial Charge-Transfer States in Semiconducting Polymer Blends 555 13.4 Conclusions and Outlook 555 Acknowledgements 556 References 556 Part Three 563 14 Nanostructured Conducting Polymers for (Electro)chemical Sensors 565 Anthony J. Killard 14.1 Introduction 565 14.2 Nanowires and Nanotubes 566 14.3 Nanogaps and Nanojunctions 568 14.4 Nanofibers and Nanocables 570 14.5 Nanofilms 572 14.6 Metallic Nanoparticle/Conducting-Polymer Nanocomposites 574 14.7 Metal-Oxide Nanoparticles/Conducting-Polymer Nanocomposites 575 14.8 Carbon Nanotube Nanocomposites 577 14.9 Nanoparticles 579 14.10 Nanoporous Templates 582 14.11 Application Summaries 583 14.12 Conclusions 593 References 594 15 Nanostructural Aspects of Conducting-Polymer Actuators 599 Paul A. Kilmartin and Jadranka Travas-Sejdic 15.1 Introduction 599 15.2 Mechanisms and Modes of Actuation 600 15.2.1 Ion Movement and Conducting-Polymer Electrochemistry 600 15.2.2 Bilayer and Trilayer Actuators 600 15.2.3 Linear Actuators and the Inclusion of Metal Contacts 602 15.2.4 Out-of-Plane Actuators 603 15.2.5 Effect of Synthesis Conditions 604 15.3 Modelling Mechanical Performance and Developing Device Applications 604 15.3.1 Modelling of Conducting-Polymer Actuation 605 15.3.2 Applications of Conducting-Polymer Actuators 607 15.4 Effect of Morphology and Nanostructure upon Actuation 610 15.4.1 Chain Alignment 610 15.4.2 Anisotropy 612 15.4.3 Porosity 614 15.4.4 Conformational Changes 614 15.5 Solvent and Ion Size Effects to Achieve Higher Actuation 615 15.5.1 Effect of Ion Size 615 15.5.2 Ionic Liquids 616 15.5.3 Ions Producing Large Actuation Strains 617 15.6 Nanostructured Composite Actuators 619 15.6.1 Blends of Two Conducting Polymers 619 15.6.2 Graphite 620 15.6.3 Carbon Nanotubes 620 15.6.4 Hydrogels 621 15.6.5 Other Interpenetrating Networks 621 15.7 Prospects for Nanostructured Conducting-Polymer Actuators 622 References 623 16 Electroactive Conducting Polymers for the Protection of Metals against Corrosion: from Micro- to Nanostructured Films 631 Pierre Camille Lacaze, Jalal Ghilane, Hyacinthe Randriamahazaka and Jean-Christophe Lacroix 16.1 Introduction 631 16.2 Protection Mechanisms Induced by Conducting Polymers 633 16.2.1 Displacement of the Electrochemical Interface 634 16.2.2 Ennobling the Metal Surface 637 16.2.3 Self-healing Effect with Doping Anions as Corrosion Inhibitors 645 16.2.4 Barrier Effect of the Polymer 650 16.3 Conducting-Polymer Coating Techniques for Usual Oxidizable Metals: Performances of Conducting-Polymer-Based Micron-Thick Films for Protection against Corrosion 656 16.3.1 Coatings Consisting of a Conducting Primer Deposited by Electropolymerization 656 16.3.2 Coatings Made from Conducting-Polymer Formulations 662 16.4 Nanostructured Conducting-Polymer Coatings and Anticorrosion Protection 665 16.4.1 Improving ECP Adhesion to Oxidizable Metals 666 16.4.2 Nanostructured Surfaces Displaying Superhydrophobic Properties 667 16.5 Conclusions 671 Acknowledgement 672 References 672 17 Electrocatalysis by Nanostructured Conducting Polymers 681 Shaolin Mu and Ya Zhang 17.1 Introduction 681 17.2 Electrochemical Synthetic Techniques of Nanostructured Conducting Polymers 682 17.2.1 Synthesis by Cyclic Voltammetry 682 17.2.2 Synthesis by Potentiostat 686 17.2.3 Synthesis by Galvanostat 690 17.3 Electrocatalysis at Nanostructured Conducting-Polymer Electrodes 692 17.3.1 Electrocatalysis by Pure Nanostructured Conducting Polymers 692 17.3.2 Electrocatalysis at the Electrodes of Conducting-Polymer Nanocomposites 695 17.4 Conclusion 700 References 701 18 Nanostructured Conductive Polymers as Biomaterials 707 Rylie A. Green, Sungchul Baek, Nigel H. Lovell, and Laura A. Poole-Warren 18.1 Introduction 707 18.2 Biomedical Applications for Conductive Polymers 708 18.2.1 Electrode Coatings 708 18.2.2 Alternate Applications 709 18.3 Polymer Design Considerations 711 18.3.1 Conduction Mechanism 711 18.3.2 Conventional Components 712 18.3.3 Biofunctional Additives 714 18.4 Fabrication of Nanostructured Conductive Polymers 715 18.4.1 Electrodeposition 717 18.4.2 Chemical Synthesis 718 18.4.3 Alternate Processing Techniques 720 18.5 Polymer Characterization 724 18.5.1 Surface Properties 724 18.5.2 Mechanical Properties 725 18.5.3 Electrical Properties 725 18.5.4 Biological Performance 726 18.6 Interfacing with Neural Tissue 727 18.7 Conclusions 728 References 729 19 Nanocomposites of Polymers Made Conductive by Nanofillers 737 Haiping Hong, Dustin Thomas, Mark Horton, Yijiang Lu, Jing Li, Pauline Smith, and Walter Roy 19.1 Introduction 737 19.2 Experimental 742 19.2.1 Materials and Equipment 742 19.2.2 Preparation of Nanocomposite (Nanotube Grease) 745 19.3 Results and Discussion 748 19.3.1 Thermal and Electrical Properties of Nanocomposites (Nanotube Greases) 748 19.3.2 Rheological Investigation of Nanocomposite (Nanotube Grease) 750 19.3.3 Nanocomposites (Nanotube Greases) with Magnetically Sensitive Nanoparticles 754 19.3.4 Electrical Conductivities of Various Nanofillers (Nanotubes) 759 19.4 Conclusion 761 Acknowledgments 761 References 762 Index 765
iri
-Marjanovi
2.1 Introduction 19 2.2 Preparation 21 2.2.1 Preparation of Polyaniline Nanofibers 21 2.2.2 Preparation of Polyaniline Nanotubes 42 2.2.3 Preparation of Miscellaneous Polyaniline Nanostructures 52 2.3 Structure and Properties 60 2.3.1 Structure and Properties of Polyaniline Nanofibers 60 2.3.2 Structure and Properties of Polyaniline Nanotubes 63 2.4 Processing and Applications 64 2.4.1 Processing 64 2.4.2 Applications 65 2.5 Conclusions and Outlook 74 References 74 3 Nanoscale Inhomogeneity of Conducting-Polymer-Based Materials 99 Alain Pailleret and Oleg Semenikhin 3.1 Introduction: Inhomogeneity and Nanostructured Materials 99 3.2 Direct Local Measurements of Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 101 3.2.1 Introduction 101 3.2.2 Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KFM), and Electric Force Microscopy (EFM) 103 3.2.3 Current-Sensing Atomic Force Microscopy (CS-AFM) 105 3.2.4 Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS) 109 3.2.5 Phase-Imaging Atomic Force Microscopy (PI-AFM) and High-Resolution Transmission Electron Microscopy (HRTEM): Studies of Local Crystallinity 112 3.2.6 Near-Field Scanning Optical Microscopy (NSOM) 124 3.3 In situ Studies of Conducting and Semiconducting Polymers: Electrochemical Atomic Force Microscopy (EC-AFM) and Electrochemical Scanning Tunneling Microscopy (EC-STM) 128 3.3.1 Introduction 128 3.3.2 EC-AFM Investigations of the Swelling/Deswelling of ECPs 129 3.3.3 EC-STM Investigations of the Swelling/Deswelling of ECPs 140 3.3.4 Scanning Electrochemical Microscopy (SECM) Investigations of ECPs 141 3.4 The Origin of the Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers 144 References 151 Part Two 161 4 Nanostructured Conductive Polymers by Electrospinning 163 Ioannis S. Chronakis 4.1 Introduction to Electrospinning Technology 163 4.2 The Electrospinning Processing 164 4.3 Electrospinning Processing Parameters: Control of the Nanofiber Morphology 165 4.3.1 Solution Properties 165 4.3.2 Process Conditions 166 4.3.3 Ambient Conditions 167 4.4 Nanostructured Conductive Polymers by Electrospinning 168 4.4.1 Polyaniline (PANI) 168 4.4.2 Polypyrrole (PPy) 175 4.4.3 Polythiophenes (PThs) 179 4.4.4 Poly(p-phenylene vinylenes) (PPVs) 183 4.4.5 Electrospun Nanofibers from Other Conductive Polymers 186 4.5 Applications of Electrospun Nanostructured Conductive Polymers 187 4.5.1 Biomedical Applications 187 4.5.2 Sensors 194 4.5.3 Conductive Nanofibers in Electric and Electronic Applications 197 4.6 Conclusions 201 References 201 5 Composites Based on Conducting Polymers and Carbon Nanotubes 209 M. Baibarac, I. Baltog, and S. Lefrant 5.1 Introduction 209 5.2 Carbon Nanotubes 212 5.2.1 Synthesis of CNTs: Arc Discharge, Laser Ablation, Chemical Vapor Deposition 214 5.2.2 Purification 217 5.2.3 Separation Techniques for Metallic and Semiconducting Carbon Nanotubes 219 5.2.4 Vibrational Properties of Carbon Nanotubes 222 5.3 Synthesis of Composites Based on Conducting Polymers and Carbon Nanotubes 224 5.3.1 Polyaniline/Carbon Nanotubes 225 5.3.2 Polypyrrole/Carbon Nanotubes 228 5.3.3 Poly(3,4-ethylenedioxythiophene)/Carbon Nanotubes 229 5.3.4 Poly(2,2 0 -bithiophene)/Carbon Nanotubes 229 5.3.5 Poly(N-vinylcarbazole)/Carbon Nanotubes 230 5.3.6 Polyfluorenes/Carbon Nanotubes 231 5.3.7 Poly(p-phenylene) Vinylene/Carbon Nanotubes 231 5.3.8 Polyacetylene/Carbon Nanotubes 232 5.4 Vibrational Properties of Composites Based on Conducting Polymers and Carbon Nanotubes 233 5.4.1 Conducting Polymer/Carbon Nanotube Bilayer Structures 233 5.4.2 Covalently Functionalized Carbon Nanotubes with Conducting Polymers 233 5.4.3 Conducting Polymers Doped with Carbon Nanotubes 244 5.4.4 Noncovalent Functionalization of Carbon Nanotubes with Conducting Polymers 247 5.5 Conclusions 249 Acknowledgments 250 References 250 6 Inorganic-Based Nanocomposites of Conductive Polymers 261 Rabin Bissessur 6.1 Introduction 261 6.2 FeOCl 262 6.3 V 2 O 5 Systems 263 6.4 Vopo 4 .2h 2 O 273 6.5 MoO 3 274 6.6 Layered Phosphates and Phosphonates 277 6.7 Layered Rutiles 279 6.8 Layered perovskites 280 6.9 Layered Titanates 280 6.10 Graphite Oxide 281 6.11 Conclusions 283 Acknowledgements 284 References 284 7 Metallic-Based Nanocomposites of Conductive Polymers 289 Vessela Tsakova 7.1 Introduction 289 7.2 Oxidative Polymerization Combined with Metal-Ion Reduction (One-Pot Synthesis) 290 7.3 Nanocomposite Formation by Means of Pre-Synthesized Metal Nanoparticles 294 7.4 Metal Electrodeposition in Pre-Synthesized CPs 297 7.4.1 Size and Size Distribution of Electrodeposited Metal Particles 305 7.4.2 Spatial Distribution of Electrodeposited Metal Particles 308 7.4.3 Number Density of Electrodeposited Metal Particles 310 7.5 Chemical Reduction of Metal Ions in Pre-Polymerized CP Suspensions or Layers 312 7.5.1 Use of the Polymer Material as Reductant 312 7.5.2 Use of Additional Reductant 320 7.6 Metallic-Based CP Composites for Electrocatalytic and Electroanalytic Applications 321 List of Acronyms 325 References 325 8 Spectroscopy of Nanostructured Conducting Polymers 341 Gustavo M. do Nascimento and Marcelo A. de Souza 8.1 Synthetic Metals 341 8.2 Nanostructured Conducting Polymers 342 8.3 Spectroscopic Techniques 344 8.3.1 Vibronic Techniques (UV-vis-NIR, FTIR, Raman, Resonance Raman) 345 8.3.2 X-Ray Techniques (XANES, EXAFS AND XPS) 346 8.4 Spectroscopy of Nanostructured Conducting Polymers 349 8.4.1 Nanostructured Polyaniline and its Derivates 349 8.4.2 Nanostructured Poly(Pyrrole) 355 8.4.3 Nanostructured Poly(Thiophenes) 358 8.4.4 Nanostructured Poly(Acetylene) and Poly(Diacetylene) and their Derivates 361 8.5 Concluding Remarks 364 Acknowledgements 365 References 365 9 Atomic Force Microscopy Study of Conductive Polymers 375 Edgar Ap. Sanches, Osvaldo N. Oliveira Jr, and Fabio Lima Leite 9.1 Introduction 375 9.2 AFM Fundamentals and Applications 376 9.2.1 Basic Principles 376 9.2.2 Imaging Modes 377 9.2.3 Force Spectroscopy 399 9.3 Concluding Remarks 405 Acknowledgments 406 References 406 10 Single Conducting-Polymer Nanowires 411 Yixuan Chen and Yi Luo 10.1 Introduction 411 10.2 Fabrication of Single Conducting-Polymer Nanowires (CPNWs) 412 10.2.1 Lithographical Methods 412 10.2.2 Scanning-Probe-Based Techniques 418 10.2.3 Template-Guided Growth or Patterning 426 10.2.4 Other Methods 436 10.3 Transport Properties and Electrical Characterization 443 10.3.1 Background 443 10.3.2 Brief Summary of Transport in 3-D CP Materials 444 10.3.3 Conductivity of CP Nanowires, Nanofibers, and Nanotubes 446 10.3.4 Summary 449 10.4 Applications of Single Conducting Polymer Nanowires (CPNWs) 449 10.4.1 CPNW Chemical and Biological Sensors 450 10.4.2 CPNW Field-Effect Transistors 453 10.4.3 CPNW Optoelectronic Devices 455 10.5 Summary and Outlook 460 References 460 11 Conductive Polymer Micro- and Nanocontainers 467 Jiyong Huang and Zhixiang Wei 11.1 Introduction 467 11.2 Structures of Micro- and Nanocontainers 468 11.2.1 Hollow Spheres 468 11.2.2 Tubes 472 11.2.3 Others 474 11.3 Preparation Methods and Formation Mechanisms 478 11.3.1 Hard-Template Method 478 11.3.2 Soft-Template Method 482 11.3.3 Micro- and Nanofabrication Techniques 485 11.4 Properties and Applications of Micro- and Nanocontainers 486 11.4.1 Chemical and Electrical Properties 487 11.4.2 Encapsulation 488 11.4.3 Drug Delivery and Controlled Release 490 11.5 Conclusions 494 References 495 12 Magnetic and Electron Transport Behaviors of Conductive-Polymer Nanocomposites 503 Zhanhu Guo, Suying Wei, David Cocke, and Di Zhang 12.1 Introduction 503 12.2 Magnetic Polymer Nanocomposite Preparation 506 12.2.1 Solution-Based Oxidation Method 506 12.2.2 Electropolymerization Method 507 12.2.3 Two-Step Deposition Method 508 12.2.4 UV-Irradiation Technique 508 12.3 Physicochemical Property Characterization 509 12.4 Microstructure of the Conductive Polymer Nanocomposites 509 12.5 Interaction between the Nanoparticles and the Conductive-Polymer Matrix 510 12.6 Magnetic Properties of Conductive-Polymer Nanocomposites 512 12.7 Electron Transport in Conductive-Polymer Nanocomposites 515 12.8 Giant Magnetoresistance in Conductive-Polymer Nanocomposites 520 12.9 Summary 522 12.9.1 Materials Design Perspective 524 References 524 13 Charge Transfer and Charge Separation in Conjugated Polymer Solar Cells 531 Ian A. Howard, Neil C. Greenham, Agnese Abrusci, Richard H. Friend, and Sebastian Westenhoff 13.1 Introduction 531 13.1.1 Polymer: PCBM Solar Cells 532 13.1.2 Polymer: Polymer Solar Cells 533 13.1.3 Polymer: Inorganic Nanoparticle Solar Cells 534 13.2 Charge Transfer in Conjugated Polymers 534 13.2.1 Excitons as the Primary Photoexcitations 535 13.2.2 Charge Transfer at Semiconductor Heterojunctions 535 13.2.3 Charge Transport 537 13.2.4 Photoinduced Charge Transfer 538 13.2.5 Onsager-Braun Model of Charge-Transfer State Dissociation 540 13.2.6 Charge Formation from High-Lying Singlet States in a Pristine Polymer 541 13.2.7 Field-Assisted Charge Generation in Pristine Materials 541 13.2.8 Charge Generation in Donor: Acceptor Blends 542 13.2.9 Mechanisms of Charge-Transfer State Recombination 544 13.3 Charge Generation and Recombination in Organic Solar Cells with High Open-Circuit Voltages 545 13.3.1 Exciton Ionization at Polymer: Polymer Heterojunctions 546 13.3.2 Photoluminescence from Charge-Transfer States 547 13.3.3 The Nature of the Charge-Transfer States 549 13.3.4 Probing the Major Loss Mechanism in Organic Solar Cells with High Open-Circuit Voltages 550 13.3.5 Geminate Recombination of Interfacial Charge-Transfer States into Triplet Excitons 552 13.3.6 The Exchange Energy of Interfacial Charge-Transfer States in Semiconducting Polymer Blends 555 13.4 Conclusions and Outlook 555 Acknowledgements 556 References 556 Part Three 563 14 Nanostructured Conducting Polymers for (Electro)chemical Sensors 565 Anthony J. Killard 14.1 Introduction 565 14.2 Nanowires and Nanotubes 566 14.3 Nanogaps and Nanojunctions 568 14.4 Nanofibers and Nanocables 570 14.5 Nanofilms 572 14.6 Metallic Nanoparticle/Conducting-Polymer Nanocomposites 574 14.7 Metal-Oxide Nanoparticles/Conducting-Polymer Nanocomposites 575 14.8 Carbon Nanotube Nanocomposites 577 14.9 Nanoparticles 579 14.10 Nanoporous Templates 582 14.11 Application Summaries 583 14.12 Conclusions 593 References 594 15 Nanostructural Aspects of Conducting-Polymer Actuators 599 Paul A. Kilmartin and Jadranka Travas-Sejdic 15.1 Introduction 599 15.2 Mechanisms and Modes of Actuation 600 15.2.1 Ion Movement and Conducting-Polymer Electrochemistry 600 15.2.2 Bilayer and Trilayer Actuators 600 15.2.3 Linear Actuators and the Inclusion of Metal Contacts 602 15.2.4 Out-of-Plane Actuators 603 15.2.5 Effect of Synthesis Conditions 604 15.3 Modelling Mechanical Performance and Developing Device Applications 604 15.3.1 Modelling of Conducting-Polymer Actuation 605 15.3.2 Applications of Conducting-Polymer Actuators 607 15.4 Effect of Morphology and Nanostructure upon Actuation 610 15.4.1 Chain Alignment 610 15.4.2 Anisotropy 612 15.4.3 Porosity 614 15.4.4 Conformational Changes 614 15.5 Solvent and Ion Size Effects to Achieve Higher Actuation 615 15.5.1 Effect of Ion Size 615 15.5.2 Ionic Liquids 616 15.5.3 Ions Producing Large Actuation Strains 617 15.6 Nanostructured Composite Actuators 619 15.6.1 Blends of Two Conducting Polymers 619 15.6.2 Graphite 620 15.6.3 Carbon Nanotubes 620 15.6.4 Hydrogels 621 15.6.5 Other Interpenetrating Networks 621 15.7 Prospects for Nanostructured Conducting-Polymer Actuators 622 References 623 16 Electroactive Conducting Polymers for the Protection of Metals against Corrosion: from Micro- to Nanostructured Films 631 Pierre Camille Lacaze, Jalal Ghilane, Hyacinthe Randriamahazaka and Jean-Christophe Lacroix 16.1 Introduction 631 16.2 Protection Mechanisms Induced by Conducting Polymers 633 16.2.1 Displacement of the Electrochemical Interface 634 16.2.2 Ennobling the Metal Surface 637 16.2.3 Self-healing Effect with Doping Anions as Corrosion Inhibitors 645 16.2.4 Barrier Effect of the Polymer 650 16.3 Conducting-Polymer Coating Techniques for Usual Oxidizable Metals: Performances of Conducting-Polymer-Based Micron-Thick Films for Protection against Corrosion 656 16.3.1 Coatings Consisting of a Conducting Primer Deposited by Electropolymerization 656 16.3.2 Coatings Made from Conducting-Polymer Formulations 662 16.4 Nanostructured Conducting-Polymer Coatings and Anticorrosion Protection 665 16.4.1 Improving ECP Adhesion to Oxidizable Metals 666 16.4.2 Nanostructured Surfaces Displaying Superhydrophobic Properties 667 16.5 Conclusions 671 Acknowledgement 672 References 672 17 Electrocatalysis by Nanostructured Conducting Polymers 681 Shaolin Mu and Ya Zhang 17.1 Introduction 681 17.2 Electrochemical Synthetic Techniques of Nanostructured Conducting Polymers 682 17.2.1 Synthesis by Cyclic Voltammetry 682 17.2.2 Synthesis by Potentiostat 686 17.2.3 Synthesis by Galvanostat 690 17.3 Electrocatalysis at Nanostructured Conducting-Polymer Electrodes 692 17.3.1 Electrocatalysis by Pure Nanostructured Conducting Polymers 692 17.3.2 Electrocatalysis at the Electrodes of Conducting-Polymer Nanocomposites 695 17.4 Conclusion 700 References 701 18 Nanostructured Conductive Polymers as Biomaterials 707 Rylie A. Green, Sungchul Baek, Nigel H. Lovell, and Laura A. Poole-Warren 18.1 Introduction 707 18.2 Biomedical Applications for Conductive Polymers 708 18.2.1 Electrode Coatings 708 18.2.2 Alternate Applications 709 18.3 Polymer Design Considerations 711 18.3.1 Conduction Mechanism 711 18.3.2 Conventional Components 712 18.3.3 Biofunctional Additives 714 18.4 Fabrication of Nanostructured Conductive Polymers 715 18.4.1 Electrodeposition 717 18.4.2 Chemical Synthesis 718 18.4.3 Alternate Processing Techniques 720 18.5 Polymer Characterization 724 18.5.1 Surface Properties 724 18.5.2 Mechanical Properties 725 18.5.3 Electrical Properties 725 18.5.4 Biological Performance 726 18.6 Interfacing with Neural Tissue 727 18.7 Conclusions 728 References 729 19 Nanocomposites of Polymers Made Conductive by Nanofillers 737 Haiping Hong, Dustin Thomas, Mark Horton, Yijiang Lu, Jing Li, Pauline Smith, and Walter Roy 19.1 Introduction 737 19.2 Experimental 742 19.2.1 Materials and Equipment 742 19.2.2 Preparation of Nanocomposite (Nanotube Grease) 745 19.3 Results and Discussion 748 19.3.1 Thermal and Electrical Properties of Nanocomposites (Nanotube Greases) 748 19.3.2 Rheological Investigation of Nanocomposite (Nanotube Grease) 750 19.3.3 Nanocomposites (Nanotube Greases) with Magnetically Sensitive Nanoparticles 754 19.3.4 Electrical Conductivities of Various Nanofillers (Nanotubes) 759 19.4 Conclusion 761 Acknowledgments 761 References 762 Index 765