74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Gebundenes Buch

Recent years have seen the widespread application of Natural Computing algorithms (broadly defined in this context as computer algorithms whose design draws inspiration from phenomena in the natural world) for the purposes of financial modelling and optimisation. A related stream of work has also seen the application of learning mechanisms drawn from Natural Computing algorithms for the purposes of agent-based modelling in finance and economics. In this book we have collected a series of chapters which illustrate these two faces of Natural Computing. The first part of the book illustrates how…mehr

Produktbeschreibung
Recent years have seen the widespread application of Natural Computing algorithms (broadly defined in this context as computer algorithms whose design draws inspiration from phenomena in the natural world) for the purposes of financial modelling and optimisation. A related stream of work has also seen the application of learning mechanisms drawn from Natural Computing algorithms for the purposes of agent-based modelling in finance and economics. In this book we have collected a series of chapters which illustrate these two faces of Natural Computing. The first part of the book illustrates how algorithms inspired by the natural world can be used as problem solvers to uncover and optimise financial models. The second part of the book examines a number agent-based simulations of financial systems.

This book follows on from Natural Computing in Computational Finance (Volume 100 in Springer's Studies in Computational Intelligence series) which in turn arose from the successof EvoFIN 2007, the very first European Workshop on Evolutionary Computation in Finance & Economics held in Valencia, Spain in April 2007.
Autorenporträt
Michael O'Neill [BSc. (UCD), PhD (UL)] is a lecturer in the Department of Computer Science and Information Systems at the University of Limerick. He has over 70 publications on biologically inspired algorithms (BIAs). He coauthored the Springer title "Grammatical Evolution -- Evolutionary Automatic Programming in an Arbitrary Language", Genetic Programming Series, 2003, 160 pp., ISBN 1-4020-7444-1. He is one of the two original developers of the Grammatical Evolution algorithm, research that spawned an annual invited tutorial at the largest evolutionary computation conference and an international workshop, and is also on a number of relevant organising committees (e.g., GECCO 2005). Michael is a regular reviewer for the leading evolutionary computation (EC) journals, namely IEEE Trans. on Evolutionary Computation, MIT Press's Evolutionary Computation, and Springer's Genetic Programming and Evolvable Hardware journal.