Nature-Inspired Algorithms and Applications
Herausgegeben:Balamurugan, S.; Jain, Anupriya; Sharma, Sachin; Goyal, Dinesh; Duggal, Sonia; Sharma, Seema
Nature-Inspired Algorithms and Applications
Herausgegeben:Balamurugan, S.; Jain, Anupriya; Sharma, Sachin; Goyal, Dinesh; Duggal, Sonia; Sharma, Seema
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Mit diesem Buch soll aufgezeigt werden, wie von der Natur inspirierte Berechnungen eine praktische Anwendung im maschinellen Lernen finden, damit wir ein besseres Verständnis für die Welt um uns herum entwickeln. Der Schwerpunkt liegt auf der Darstellung und Präsentation aktueller Entwicklungen in den Bereichen, in denen von der Natur inspirierte Algorithmen speziell konzipiert und angewandt werden, um komplexe reale Probleme in der Datenanalyse und Mustererkennung zu lösen, und zwar durch Anwendung fachspezifischer Lösungen. Mit einer detaillierten Beschreibung verschiedener, von der Natur…mehr
- Nanopharmaceutical Advanced Delivery Systems279,99 €
- The¿re¿se HardinConcepts and Semantics of Programming Languages 1186,99 €
- Safwan El AssadDigital Communications 1184,99 €
- Craig S. LentLearning to Program with MATLAB83,99 €
- Handbook of Machine and Computer Vision205,99 €
- Philippe DarcheMicroprocessor 4189,99 €
- Philippe DarcheMicroprocessor 3189,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley & Sons / Wiley-Scrivener
- Artikelnr. des Verlages: 1W119681740
- 1. Auflage
- Seitenzahl: 384
- Erscheinungstermin: 14. Dezember 2021
- Englisch
- Abmessung: 231mm x 157mm x 25mm
- Gewicht: 656g
- ISBN-13: 9781119681748
- ISBN-10: 111968174X
- Artikelnr.: 58666819
- Verlag: Wiley & Sons / Wiley-Scrivener
- Artikelnr. des Verlages: 1W119681740
- 1. Auflage
- Seitenzahl: 384
- Erscheinungstermin: 14. Dezember 2021
- Englisch
- Abmessung: 231mm x 157mm x 25mm
- Gewicht: 656g
- ISBN-13: 9781119681748
- ISBN-10: 111968174X
- Artikelnr.: 58666819
1 Introduction to Nature-Inspired Computing 1
N.M. Saravana Kumar, K. Hariprasath, N. Kaviyavarshini and A. Kavinya
1.1 Introduction 1
1.2 Aspiration From Nature 2
1.3 Working of Nature 3
1.4 Nature-Inspired Computing 4
1.4.1 Autonomous Entity 5
1.5 General Stochastic Process of Nature-Inspired Computation 6
1.5.1 NIC Categorization 8
1.5.1.1 Bioinspired Algorithm 9
1.5.1.2 Swarm Intelligence 10
1.5.1.3 Physical Algorithms 11
1.5.1.4 Familiar NIC Algorithms 12
References 30
2 Applications of Hybridized Algorithms and Novel Algorithms in the Field of Machine Learning 33
P. Mary Jeyanthi and A. Mansurali
2.1 Introduction of Genetic Algorithm 33
2.1.1 Background of GA 35
2.1.2 Why Natural Selection Theory Compared With the Search Heuristic Algorithm? 35
2.1.3 Working Sequence of Genetic Algorithm 35
2.1.3.1 Population 35
2.1.3.2 Fitness Among the Individuals 36
2.1.3.3 Selection of Fitted Individuals 36
2.1.3.4 Crossover Point 37
2.1.3.5 Mutation 37
2.1.4 Application of Machine Learning in GA 38
2.1.4.1 Genetic Algorithm Role in Feature Selection for ML Problem 38
2.1.4.2 Traveling Salesman Problem 39
2.1.4.3 Blackjack--A Casino Game 40
2.1.4.4 Pong Against AI--Evolving Agents (Reinforcement Learning) Using GA 41
2.1.4.5 SNAKE AI--Game 41
2.1.4.6 Genetic Algorithm's Role in Neural Network 42
2.1.4.7 Solving a Battleship Board Game as an Optimization Problem Which Was Initially Released by Milton Bradley in 1967 43
2.1.4.8 Frozen Lake Problem From OpenAI Gym 43
2.1.4.9 N-Queen Problem 44
2.1.5 Application of Data Mining in GA 44
2.1.5.1 Association Rules Generation 44
2.1.5.2 Pattern Classification With Genetic Algorithm 45
2.1.5.3 Genetic Algorithms in Stock Market Data Mining Optimization 46
2.1.5.4 Market Basket Analysis 46
2.1.5.5 Job Scheduling 46
2.1.5.6 Classification Problem 47
2.1.5.7 Hybrid Decision Tree--Genetic Algorithm to Data Mining 47
2.1.5.8 Genetic Algorithm--Optimization of Data Mining in Education 47
2.1.6 Advantages of Genetic Algorithms 47
2.1.7 Genetic Algorithms Demerits in the Current Era 48
2.2 Introduction to Artificial Bear Optimization (ABO) 50
2.2.1 Bear's Nasal Cavity 52
2.2.2 Artificial Bear ABO Gist 54
2.2.3 Implementation Based on Requirement 58
2.2.3.1 Market Place 58
2.2.3.2 Industry-Specific 58
2.2.3.3 Semi-Structured or Unstructured Data 59
2.2.4 Merits of ABO 60
2.3 Performance Evaluation 61
2.4 What is Next? 62
References 63
3 Efficiency of Finding Best Solutions Through Ant Colony Optimization (ACO) Technique 67
K. Sasi Kala Rani and N. Pooranam
3.1 Introduction 68
3.1.1 Example of Optimization Process 69
3.1.2 Components of Optimization Algorithms 70
3.1.3 Optimization Techniques Based on Solutions 70
3.1.3.1 Optimization Techniques Based on Algorithms 72
3.1.4 Characteristics 73
3.1.5 Classes of Heuristic Algorithms 74
3.1.6 Metaheuristic Algorithms 75
3.1.6.1 Classification of Metaheuristic Algorithms: Nature-Inspired vs. Non-Nature-Inspired 75
3.1.6.2 Population-Based vs. Single-Point Search (Trajectory) 75
3.1.7 Data Processing Flow of ACO 76
3.2 A Case Study on Surgical Treatment in Operation Room
1 Introduction to Nature-Inspired Computing 1
N.M. Saravana Kumar, K. Hariprasath, N. Kaviyavarshini and A. Kavinya
1.1 Introduction 1
1.2 Aspiration From Nature 2
1.3 Working of Nature 3
1.4 Nature-Inspired Computing 4
1.4.1 Autonomous Entity 5
1.5 General Stochastic Process of Nature-Inspired Computation 6
1.5.1 NIC Categorization 8
1.5.1.1 Bioinspired Algorithm 9
1.5.1.2 Swarm Intelligence 10
1.5.1.3 Physical Algorithms 11
1.5.1.4 Familiar NIC Algorithms 12
References 30
2 Applications of Hybridized Algorithms and Novel Algorithms in the Field of Machine Learning 33
P. Mary Jeyanthi and A. Mansurali
2.1 Introduction of Genetic Algorithm 33
2.1.1 Background of GA 35
2.1.2 Why Natural Selection Theory Compared With the Search Heuristic Algorithm? 35
2.1.3 Working Sequence of Genetic Algorithm 35
2.1.3.1 Population 35
2.1.3.2 Fitness Among the Individuals 36
2.1.3.3 Selection of Fitted Individuals 36
2.1.3.4 Crossover Point 37
2.1.3.5 Mutation 37
2.1.4 Application of Machine Learning in GA 38
2.1.4.1 Genetic Algorithm Role in Feature Selection for ML Problem 38
2.1.4.2 Traveling Salesman Problem 39
2.1.4.3 Blackjack--A Casino Game 40
2.1.4.4 Pong Against AI--Evolving Agents (Reinforcement Learning) Using GA 41
2.1.4.5 SNAKE AI--Game 41
2.1.4.6 Genetic Algorithm's Role in Neural Network 42
2.1.4.7 Solving a Battleship Board Game as an Optimization Problem Which Was Initially Released by Milton Bradley in 1967 43
2.1.4.8 Frozen Lake Problem From OpenAI Gym 43
2.1.4.9 N-Queen Problem 44
2.1.5 Application of Data Mining in GA 44
2.1.5.1 Association Rules Generation 44
2.1.5.2 Pattern Classification With Genetic Algorithm 45
2.1.5.3 Genetic Algorithms in Stock Market Data Mining Optimization 46
2.1.5.4 Market Basket Analysis 46
2.1.5.5 Job Scheduling 46
2.1.5.6 Classification Problem 47
2.1.5.7 Hybrid Decision Tree--Genetic Algorithm to Data Mining 47
2.1.5.8 Genetic Algorithm--Optimization of Data Mining in Education 47
2.1.6 Advantages of Genetic Algorithms 47
2.1.7 Genetic Algorithms Demerits in the Current Era 48
2.2 Introduction to Artificial Bear Optimization (ABO) 50
2.2.1 Bear's Nasal Cavity 52
2.2.2 Artificial Bear ABO Gist 54
2.2.3 Implementation Based on Requirement 58
2.2.3.1 Market Place 58
2.2.3.2 Industry-Specific 58
2.2.3.3 Semi-Structured or Unstructured Data 59
2.2.4 Merits of ABO 60
2.3 Performance Evaluation 61
2.4 What is Next? 62
References 63
3 Efficiency of Finding Best Solutions Through Ant Colony Optimization (ACO) Technique 67
K. Sasi Kala Rani and N. Pooranam
3.1 Introduction 68
3.1.1 Example of Optimization Process 69
3.1.2 Components of Optimization Algorithms 70
3.1.3 Optimization Techniques Based on Solutions 70
3.1.3.1 Optimization Techniques Based on Algorithms 72
3.1.4 Characteristics 73
3.1.5 Classes of Heuristic Algorithms 74
3.1.6 Metaheuristic Algorithms 75
3.1.6.1 Classification of Metaheuristic Algorithms: Nature-Inspired vs. Non-Nature-Inspired 75
3.1.6.2 Population-Based vs. Single-Point Search (Trajectory) 75
3.1.7 Data Processing Flow of ACO 76
3.2 A Case Study on Surgical Treatment in Operation Room