The book describes recent progress of near-field optical science and technology. The title of the book implies capabilities of optical near-field not only for imaging/microscopy but also for fabrication/manipulation/processing in nanometric scale. The authors introduce the differences between near-field optics and far-field optics from both an experimental and theoretical perspective. The book touches on a wide range of topics in near-field optics, and can be used both by the novice and experienced researcher already familiar with the subject, to connect the experimental with the theoretical aspects of near-field optics.…mehr
The book describes recent progress of near-field optical science and technology. The title of the book implies capabilities of optical near-field not only for imaging/microscopy but also for fabrication/manipulation/processing in nanometric scale. The authors introduce the differences between near-field optics and far-field optics from both an experimental and theoretical perspective. The book touches on a wide range of topics in near-field optics, and can be used both by the novice and experienced researcher already familiar with the subject, to connect the experimental with the theoretical aspects of near-field optics.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Introduction.- 1.1. Near-Field Optics and Photonics.- 1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM).- 1.3. General Features of Optical Near-Field Problems.- 1.4. Theoretical Treatment of Optical Near-Field Problems.- 1.5. Remarks on Near-Field Optics and Outline of This Book.- 1.6. References.- 2. Principles of Near-Field Optical Microscopy.- 2.1. An Example of Near-Field Optical Microscopy.- 2.2. Construction of the NOM System.- 2.3. Theoretical Description of Near-Field Optical Microscopy.- 2.4. Near-Field Problems and the Tunneling Process.- 2.5. References.- 3. Instrumentation.- 3.1. Basic Systems of a Near-Field Optical Microscope.- 3.2. Light Sources.- 3.3. Light Detection and Signal Amplification.- 3.4. References.- 4. Fabrication of Probes.- 4.1. Sharpening of Fibers by Chemical Etching.- 4.2. Metal Coating and Fabrication of a Protruded Probe.- 4.3. Other Novel Probes.- 4.4. References.- 5. Imaging Experiments.- 5.1. Basic Features of the Localized Evanescent Field.- 5.2. Imaging Biological Samples.- 5.3. Spatial Power Spectral Analysis of the NOM Image.- 5.4. References.- 6. Diagnostics and Spectroscopy of Photonic Devices and Materials.- 6.1. Diagnosing a Dielectric Optical Waveguide.- 6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide.- 6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot.- 6.4. Imaging of Other Materials.- 6.5. References.- 7. Fabrication and Manipulation.- 7.1. Fabrication of Photonic Devices.- 7.2. Manipulating Atoms.- 7.3. References.- 8. Optical Near-Field Theory.- 8.1. Introduction.- 8.2. Electromagnetic Theory as the Basis of Treating Near-Field Problems.- 8.3. Optical Near-Field Theory as an Electromagnetic Scattering Problem.- 8.4. Diffraction Theory inNear-Field Optics.- 8.5. Intuitive Model of Optical Near-Field Processes.- 8.6. References.- 9. Theoretical Description of Near-Field Optical Microscope.- 9.1. Electromagnetic Processes Involved in the Near-Field Optical Microscope.- 9.2. Representation of the Electromagnetic Field and the Interaction Propagator.- 9.3. States of Vector Fields and Their Representations.- 9.4. Angular Spectrum Representation of Electromagnetic Interactions.- 9.5. Near-Field Interaction of Dielectric Spheres Near a Planar Dielectric Surface.- 9.6. References.
1. Introduction.- 1.1. Near-Field Optics and Photonics.- 1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM).- 1.3. General Features of Optical Near-Field Problems.- 1.4. Theoretical Treatment of Optical Near-Field Problems.- 1.5. Remarks on Near-Field Optics and Outline of This Book.- 1.6. References.- 2. Principles of Near-Field Optical Microscopy.- 2.1. An Example of Near-Field Optical Microscopy.- 2.2. Construction of the NOM System.- 2.3. Theoretical Description of Near-Field Optical Microscopy.- 2.4. Near-Field Problems and the Tunneling Process.- 2.5. References.- 3. Instrumentation.- 3.1. Basic Systems of a Near-Field Optical Microscope.- 3.2. Light Sources.- 3.3. Light Detection and Signal Amplification.- 3.4. References.- 4. Fabrication of Probes.- 4.1. Sharpening of Fibers by Chemical Etching.- 4.2. Metal Coating and Fabrication of a Protruded Probe.- 4.3. Other Novel Probes.- 4.4. References.- 5. Imaging Experiments.- 5.1. Basic Features of the Localized Evanescent Field.- 5.2. Imaging Biological Samples.- 5.3. Spatial Power Spectral Analysis of the NOM Image.- 5.4. References.- 6. Diagnostics and Spectroscopy of Photonic Devices and Materials.- 6.1. Diagnosing a Dielectric Optical Waveguide.- 6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide.- 6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot.- 6.4. Imaging of Other Materials.- 6.5. References.- 7. Fabrication and Manipulation.- 7.1. Fabrication of Photonic Devices.- 7.2. Manipulating Atoms.- 7.3. References.- 8. Optical Near-Field Theory.- 8.1. Introduction.- 8.2. Electromagnetic Theory as the Basis of Treating Near-Field Problems.- 8.3. Optical Near-Field Theory as an Electromagnetic Scattering Problem.- 8.4. Diffraction Theory inNear-Field Optics.- 8.5. Intuitive Model of Optical Near-Field Processes.- 8.6. References.- 9. Theoretical Description of Near-Field Optical Microscope.- 9.1. Electromagnetic Processes Involved in the Near-Field Optical Microscope.- 9.2. Representation of the Electromagnetic Field and the Interaction Propagator.- 9.3. States of Vector Fields and Their Representations.- 9.4. Angular Spectrum Representation of Electromagnetic Interactions.- 9.5. Near-Field Interaction of Dielectric Spheres Near a Planar Dielectric Surface.- 9.6. References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826