Monografiya posvyashchena aktual'nym problemam sistem nelineynykh algebraicheskikh uravneniy so mnogimi peremennymi. Dlya algebraicheskikh sistem, soderzhashchikh razlichnye stepeni i proizvedeniya peremennykh, postroeny analogi opredeliteley Kramera, s pomoshch'yu kotorykh dayetsya kriteriy sushchestvovaniya resheniy nelineynykh sistem uravneniy. Elementami postroennykh opredeliteley yavlyayutsya chisla, sostavlennye s pomoshch'yu koeffitsientov sistemy, ukazannym v monografii sposobom. V rabote predlozheny dva podkhoda issledovaniya, ispol'zuya kotorye, mozhno otvetit' na vopros sushchestvovaniya resheniy nelineynoy sistemy algebraicheskikh uravneniy, nayti chislo etikh resheniy , a pri opredelyennykh usloviyakh i ikh veshchestvennost'. Privedeny takzhe obobshcheniya rezul'tatov na sluchay nelineynykh sistem operatornykh uravneniy v konechnomernykh prostranstvakh Gil'berta. Monografiya budet polezna studentam starshikh kursov, aspirantam i matematikam, rabotayushchim v oblasti lineynoy algebry i spektral'noy teorii operatorov.