There is an ever-increasing need to solve optimization problems in a wide variety of science and engineering applications. This up-to-date and highly relevant book provides a cutting-edge research tool to use for large-scale, complex systems optimization.
Thesubjectofthisbookisthenested partitions method(NP),arelativelynew optimization method that has been found to be very e?ective solving discrete optimization problems. Such discrete problems are common in many practical applications and the NP method is thus useful in diverse application areas. It can be applied to both operational and planning problems and has been demonstrated to e?ectively solve complex problems in both manufacturing and service industries. To illustrate its broad applicability and e?ectiveness, in this book we will show how the NP method has been successful in solving complex problems in planning and scheduling, logistics and transportation, supply chain design, data mining, and health care. All of these diverse app- cationshaveonecharacteristicincommon:theyallleadtocomplexlarge-scale discreteoptimizationproblemsthatareintractableusingtraditionaloptimi- tion methods. 1.1 Large-Scale Optimization IndevelopingtheNPmethodwewillconsideroptimization problemsthatcan be stated mathematically in the following generic form: minf(x), (1.1) x?X where the solution space or feasible region X is either a discrete or bounded ? set of feasible solutions. We denote a solution to this problem x and the ? ? objective function value f = f (x ).
Thesubjectofthisbookisthenested partitions method(NP),arelativelynew optimization method that has been found to be very e?ective solving discrete optimization problems. Such discrete problems are common in many practical applications and the NP method is thus useful in diverse application areas. It can be applied to both operational and planning problems and has been demonstrated to e?ectively solve complex problems in both manufacturing and service industries. To illustrate its broad applicability and e?ectiveness, in this book we will show how the NP method has been successful in solving complex problems in planning and scheduling, logistics and transportation, supply chain design, data mining, and health care. All of these diverse app- cationshaveonecharacteristicincommon:theyallleadtocomplexlarge-scale discreteoptimizationproblemsthatareintractableusingtraditionaloptimi- tion methods. 1.1 Large-Scale Optimization IndevelopingtheNPmethodwewillconsideroptimization problemsthatcan be stated mathematically in the following generic form: minf(x), (1.1) x?X where the solution space or feasible region X is either a discrete or bounded ? set of feasible solutions. We denote a solution to this problem x and the ? ? objective function value f = f (x ).