110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
55 °P sammeln
  • Gebundenes Buch

Covering at an advanced level the most fundamental concepts and methods in fuzzy logic applications to studying neural cell behavior, this book examines motivation and awareness from a physiological and biochemical perspective, illustrating fuzzy mechanisms.
This book covers at an advanced level the most fundamental ideas, concepts and methods in the field of applications of fuzzy logic to the study of neural cell behavior. Motivation and awareness are examined from a physiological and biochemical perspective illustrating fuzzy mechanisms of complex systems.

Produktbeschreibung
Covering at an advanced level the most fundamental concepts and methods in fuzzy logic applications to studying neural cell behavior, this book examines motivation and awareness from a physiological and biochemical perspective, illustrating fuzzy mechanisms.
This book covers at an advanced level the most fundamental ideas, concepts and methods in the field of applications of fuzzy logic to the study of neural cell behavior. Motivation and awareness are examined from a physiological and biochemical perspective illustrating fuzzy mechanisms of complex systems.
Autorenporträt
About the authors: Uziel Sandler is a professor in the Department of Applied Mathematics at Jerusalem College of Technology in Israel. Dr. Sandler is an expert in nonlinear properties and critical behavior of condensed matter, evolutionary computations, and fuzzy sets theory. He has published two books and more than 70 academic articles in scientific journals, and is a member in several worldwide committees in the aforementioned fields. Professor Lev E.Tsitolovsky is a senior researcher in the Life Science Department of Bar-Ilan University in Israel. He is a renowned expert in the fields of thorough mechanisms of learning, memory , and motivation , and has published over 100 scientific papers and reviews on these topics. Recently, his discovery of excitable membrane plasticity anticipated modern development in this area.