78,99 €
inkl. MwSt.
Versandkostenfrei*
Sofort lieferbar
payback
39 °P sammeln
  • Gebundenes Buch

Neural Surface Antigens: From Basic Biology towards Biomedical Applications focuses on the functional role of surface molecules in neural development, stem cell research, and translational biomedical paradigms. With an emphasis on human and rodent model systems, this reference covers fundamentals of neural stem cell biology and flow cytometric methodology. Addressing cell biologists as well as clinicians working in the neurosciences, the book was conceived by an international panel of experts to cover a vast array of particular surface antigen families and subtypes. It provides insight into…mehr

Produktbeschreibung
Neural Surface Antigens: From Basic Biology towards Biomedical Applications focuses on the functional role of surface molecules in neural development, stem cell research, and translational biomedical paradigms. With an emphasis on human and rodent model systems, this reference covers fundamentals of neural stem cell biology and flow cytometric methodology. Addressing cell biologists as well as clinicians working in the neurosciences, the book was conceived by an international panel of experts to cover a vast array of particular surface antigen families and subtypes. It provides insight into the basic biology and functional mechanisms of neural cell surface signaling molecules influencing mammalian development, regeneration, and treatments.
Autorenporträt
Dr. Jan Pruszak obtained his medical degree from Hannover Medical School in Germany and went on to pursue postdoctoral training at Harvard Medical School, with Dr. Ole Isacson at the Center for Neuroregeneration Research, and at the Whitehead Institute for Biomedical Research, with Dr. Thijn Brummelkamp. From 2007 to 2010 he held an academic appointment as an Instructor at Harvard Medical School and was an affiliated faculty member of the Harvard Stem Cell Institute. Since early 2011, he has been a research group leader at the University of Freiburg, Germany leading research in the regulation of growth and neural lineage specification of stem cells, in the context of developmental biology and regenerative medicine.