This textbook provides students with knowledge of neurogenetics, neurogenesis, neuronal specification and function, neuronal networks, learning and memory formation, brain evolution, and neurodegenerative diseases.
Students are introduced to topics of classical developmental genetics as well as modern molecular and neurogenetic methods. Using a wealth of examples from current research, the textbook takes a strong applied approach. Using animal models such as Drosophila melanogaster and Caenorhabditis elegans as well as mammalian systems, the interrelationships between genes, neurons, nervous systems, and behaviour under normal and pathological conditions are illustrated.
The textbook aims encourage students to address biological questions in neurogenetics and to think about the design of their own experiments. It targets primarily master and graduate students in neurobiology, but is also a valuable teaching tool for instructors in these fields.
Students are introduced to topics of classical developmental genetics as well as modern molecular and neurogenetic methods. Using a wealth of examples from current research, the textbook takes a strong applied approach. Using animal models such as Drosophila melanogaster and Caenorhabditis elegans as well as mammalian systems, the interrelationships between genes, neurons, nervous systems, and behaviour under normal and pathological conditions are illustrated.
The textbook aims encourage students to address biological questions in neurogenetics and to think about the design of their own experiments. It targets primarily master and graduate students in neurobiology, but is also a valuable teaching tool for instructors in these fields.