- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This second edition has all the tables required for elementary statistical methods in the social, business and natural sciences.
Andere Kunden interessierten sich auch für
- David A. Freedman (Berkeley University of California)Statistical Models62,99 €
- G. A. Young (Technology Imperial College of Science and MedicineEssentials of Statistical Inference46,99 €
- Morten FagerlandStatistical Analysis of Contingency Tables51,99 €
- Bruce G. Trigger (Montreal McGill University)History Archaeological Thought 2ed54,99 €
- Michael Maas (ed.)Camb Companion to Age of Justinian102,99 €
- Donald Quataert (Binghamton State University of New York)The Ottoman Empire, 1700-1922 2ed44,99 €
- M. Scott Shell (Santa Barbara University of California)Thermodynamics and Statistical Mechanics59,99 €
-
-
-
This second edition has all the tables required for elementary statistical methods in the social, business and natural sciences.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 2., überarb. Aufl.
- Seitenzahl: 98
- Erscheinungstermin: 1. März 2019
- Englisch
- Abmessung: 280mm x 216mm x 6mm
- Gewicht: 285g
- ISBN-13: 9780521484855
- ISBN-10: 0521484855
- Artikelnr.: 21665666
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- 2., überarb. Aufl.
- Seitenzahl: 98
- Erscheinungstermin: 1. März 2019
- Englisch
- Abmessung: 280mm x 216mm x 6mm
- Gewicht: 285g
- ISBN-13: 9780521484855
- ISBN-10: 0521484855
- Artikelnr.: 21665666
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
1. The binomial distribution function; 2. The Poisson distribution function; 3. Binomial coefficients; 4. The normal distribution function; 5. Percentage points of the normal distribution; 6. Logarithms of factorials; 7. The chi-squared distribution function; 8. Percentage points of the chi-squared distribution; 9. The t-distribution function; 10. Percentage points of the t-distribution; 11. Percentage points of Behrens' distribution; 12. Percentage points of the F-distribution; 13. Percentage points of the correlation coefficient r when rho = 0; 14. Percentage points of Spearman's S; 15. Percentage points of Kendall's K; 16. The z-transformation of the correlation coefficient; 17. The inverse of the z-transformation; 18. Percentage points of the distribution of the number of runs; 19. Upper percentage points of the two-sample Kolmogorov-Smirnov distribution; 20 Percentage points of Wilcoxon's signed-rank distribution; 21. Percentage points of the Mann-Whitney distribution; 22A. Expected values of normal order statistics (normal scores); 22B. Sums of squares of normal scores; 23. Upper percentage points of the one-sample Kolmogorov-Smirnov distribution; 24. Upper percentage points of Friedmann's distribution; 25. Upper percentage points of the Kruskal-Wallis distribution; 26. Hypergeometric probabilities; 27. Random sampling numbers; 28. Random normal deviates; 29. Bayesian confidence limits for a binomial parameter; 30. Bayesian confidence limits for a Poisson mean; 31. Bayesian confidence limits for the square of a multiple correlation coefficient; A note on interpolation; Constants.
1. The binomial distribution function; 2. The Poisson distribution function; 3. Binomial coefficients; 4. The normal distribution function; 5. Percentage points of the normal distribution; 6. Logarithms of factorials; 7. The chi-squared distribution function; 8. Percentage points of the chi-squared distribution; 9. The t-distribution function; 10. Percentage points of the t-distribution; 11. Percentage points of Behrens' distribution; 12. Percentage points of the F-distribution; 13. Percentage points of the correlation coefficient r when rho = 0; 14. Percentage points of Spearman's S; 15. Percentage points of Kendall's K; 16. The z-transformation of the correlation coefficient; 17. The inverse of the z-transformation; 18. Percentage points of the distribution of the number of runs; 19. Upper percentage points of the two-sample Kolmogorov-Smirnov distribution; 20 Percentage points of Wilcoxon's signed-rank distribution; 21. Percentage points of the Mann-Whitney distribution; 22A. Expected values of normal order statistics (normal scores); 22B. Sums of squares of normal scores; 23. Upper percentage points of the one-sample Kolmogorov-Smirnov distribution; 24. Upper percentage points of Friedmann's distribution; 25. Upper percentage points of the Kruskal-Wallis distribution; 26. Hypergeometric probabilities; 27. Random sampling numbers; 28. Random normal deviates; 29. Bayesian confidence limits for a binomial parameter; 30. Bayesian confidence limits for a Poisson mean; 31. Bayesian confidence limits for the square of a multiple correlation coefficient; A note on interpolation; Constants.