New Frontiers in Mining Complex Patterns
First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers
Herausgegeben:Appice, Annalisa; Ceci, Michelangelo; Loglisci, Corrado; Manco, Giuseppe; Masciari, Elio; Ras, Zbigniew
New Frontiers in Mining Complex Patterns
First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers
Herausgegeben:Appice, Annalisa; Ceci, Michelangelo; Loglisci, Corrado; Manco, Giuseppe; Masciari, Elio; Ras, Zbigniew
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012. The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
Andere Kunden interessierten sich auch für
- New Frontiers in Mining Complex Patterns41,99 €
- New Frontiers in Mining Complex Patterns41,99 €
- New Frontiers in Mining Complex Patterns39,99 €
- New Frontiers in Mining Complex Patterns41,99 €
- Zbigniew W. Ras / Shusaku Tsumoto / Djamel A. Zighed (eds.)Mining Complex Data41,99 €
- Advances in Information Retrieval98,99 €
- Sanjay Chawla / Takashi Washio / Shin-ichi et al. Minato (Volume editor)New Frontiers in Applied Data Mining41,99 €
-
-
-
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012.
The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 7765
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-37381-7
- Seitenzahl: 231
- Englisch
- Abmessung: 14mm x 155mm x 238mm
- Gewicht: 377g
- ISBN-13: 9783642373817
- ISBN-10: 364237381X
- Artikelnr.: 37478036
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 7765
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-37381-7
- Seitenzahl: 231
- Englisch
- Abmessung: 14mm x 155mm x 238mm
- Gewicht: 377g
- ISBN-13: 9783642373817
- ISBN-10: 364237381X
- Artikelnr.: 37478036
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.
Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.
Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.
Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.
Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.
Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.