'There is no higher or lower knowledge, but only one, flowing out of experimen tation. ' (Leonardo da Vinci, 1452-1519) Food materials are complex in terms of composition, structure and mechanical properties. In order to understand the relationship between these different kinds of complexity, the experimental food scientist has a wide range of physico-chemical techniques at his or her disposal. But, in practice, of course, there are often severe limitations on the techniques which are available for any particular investigation. Apart from obvious constraints associated with instrument cost and…mehr
'There is no higher or lower knowledge, but only one, flowing out of experimen tation. ' (Leonardo da Vinci, 1452-1519) Food materials are complex in terms of composition, structure and mechanical properties. In order to understand the relationship between these different kinds of complexity, the experimental food scientist has a wide range of physico-chemical techniques at his or her disposal. But, in practice, of course, there are often severe limitations on the techniques which are available for any particular investigation. Apart from obvious constraints associated with instrument cost and accessibility, one com mon problem is a lack of knowledge by the non-expert about the capabilities and limitations of every new advance in instrumentation. No individual worker in the field of food science can become expert in more than a very small number of experimental techniques. On the other hand, most of us wish to know enough about the major emerging experimental technologies to enable us to make a realistic assessment of what they may have to contribute towards any new problems that we may meet. This book collects together in a single volume an up-to-date set of introductory articles describing a range of new physico-chemical tech niques which can be used to probe food structure at the molecular, colloidal and microscopic levels. Each individual chapter is written by an acknowledged expert in his field.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Advances in Electron Microscopy.- 1.1 Introduction.- 1.2 General techniques.- 1.3 Microstructure and rheology of ovalbumin gels: example of an integrated study.- References.- 2. Imaging Food Systems by Confocal Laser Scanning Microscopy.- 2.1 Introduction.- 2.2 Principles of operation.- 2.3 Fluorescent dyes - practical aspects.- 2.4 Applications to food systems.- 2.5 Concluding remarks.- References.- 3. Scanning Probe Microscopy of Food-Related Systems.- 3.1 General introduction.- 3.2 Introduction to scanning probe microscopy techniques.- 3.3 Carbohydrates.- 3.4 Chromosomes, DNA and bases.- 3.5 Proteins.- 3.6 Cells.- 3.7 Conclusions and future prospects.- References.- 4. Electron Spin Resonance Spectroscopy for Detection of Irradiated Food.- 4.1 Introduction.- 4.2 Uses of irradiation in the food industry.- 4.3 Development of detection methods.- 4.4 Principles of electron spin resonance.- 4.5 Factors affecting spectral derivation.- 4.6 Application of ESR spectroscopy to detection of irradiated foods.- 4.7 Packaging materials.- 4.8 Multilaboratory intercomparisons.- 4.9 The future of ESR detection.- References.- 5. Ultracentrifugation of Food Biopolymers.- 5.1 Introduction and historical comment.- 5.2 Types of analytical ultracentrifuge measurement.- 5.3 Instrumentation/optical systems.- 5.4 Sedimentation velocity: shape analysis and homogeneity.- 5.5 Sedimentation equilibrium: molecular weight distribution analysis.- 5.6 Analytical density gradient sedimentation equilibrium.- References.- 6. Rheology of Biopolymer Solutions and Gels.- 6.1 Introduction.- 6.2 Biopolymer size and shape.- 6.3 Concentration regimes.- 6.4 Oscillatory measurements: mechanical spectroscopy.- 6.5 Time-temperature superposition.- Acknowledgement.- References.- 7. Fracture Mechanics of SolidFoods.- 7.1 Introduction.- 7.2 Fracture mechanics.- 7.3 Methods to evaluate fracture properties.- Acknowledgement.- References.- 8. Recent Developments in Infrared Spectroscopy and Microscopy.- 8.1 Introduction.- 8.2 Theory.- 8.3 Applications.- 8.4 Conclusions.- Acknowledgements.- References.- 9. Ultrasound Studies of Shelf-Life and Crystallization.- 9.1 Introduction.- 9.2 Theoretical background.- 9.3 Crystallization in emulsions.- 9.4 Creaming in emulsions.- 9.5 Conclusions.- References.- 10. Dynamic Surface Tension and Dilational Interfacial Properties.- 10.1 Introduction.- 10.2 Overflowing cylinder technique.- 10.3 Free falling film technique.- 10.4 Ring trough technique.- 10.5 Caterpillar trough technique.- 10.6 Mannheimer trough technique.- References.- 11. Light Scattering Studies of Colloid Stability and Gelation.- 11.1 Introduction.- 11.2 Light scattering background.- 11.3 Dynamic light scattering from concentrated opaque suspensions.- 11.4 Dynamic light scattering from gelling systems.- Acknowledgement.- References.- 12. Small-Angle Neutron Scattering and Neutron Reflection.- 12.1 Introduction.- 12.2 Principles of scattering methods.- 12.3 Why use neutrons?.- 12.4 Small-angle neutron scattering (SANS).- 12.5 Neutron reflectometry.- 12.6 Outlook.- Acknowledgements.- References.- 13. High Resolution Nuclear Magnetic Resonance Spectroscopy of Solid and Semi-Solid Food Components.- 13.1 General considerations.- 13.2 Chemical information: molecular conformation and order.- 13.3 Physical information: mobility-resolved spectroscopy.- 13.4 Agarose, ?-carrageenan and ?-carrageenan.- 13.5 Summary and future challenges.- References.- 14. Magnetic Resonance Imaging in Food Science.- 14.1 Introduction.- 14.2 Principles of magnetic resonance imaging.- 14.3 Overview ofapplications.- 14.4 Quantitative imaging protocols.- 14.5 Application of T2-weighted radial imaging protocol to rehydration of extruded pasta.- 14.6 Theoretical modelling of moisture profiles.- 14.7 Conclusions.- References.
Advances In Electron Microscopy. Imaging Food Systems by Confocal Laser Scanning Microscopy. Scanning Probe Microscopy of Food-Related Systems. Electron Spin Resonance Spectroscopy for Detection of Irradiated Food. Ultracentrifugation of Food Biopolymers. Rheology of Bipolymer Solutions and Gels. Fracture Mechanics of Solid Foods. Recent Developments in Infrared Spectroscopy and Microscopy. Ultrasound Studies of Shelf-Life and Crystallization. Dynamic Surface Tension and Dilatational Interfacial Properties. Light Scattering Studies of Colloid Stability and Gelation. Small-Angle Neutron Scattering and Neutron Reflection. High Resolution Nuclear Magnetic Resonance Spectroscopy of Solid and Semi-Solid Food Components. Magnetic Resonance Imaging in Food Science. References. Index
1. Advances in Electron Microscopy.- 1.1 Introduction.- 1.2 General techniques.- 1.3 Microstructure and rheology of ovalbumin gels: example of an integrated study.- References.- 2. Imaging Food Systems by Confocal Laser Scanning Microscopy.- 2.1 Introduction.- 2.2 Principles of operation.- 2.3 Fluorescent dyes - practical aspects.- 2.4 Applications to food systems.- 2.5 Concluding remarks.- References.- 3. Scanning Probe Microscopy of Food-Related Systems.- 3.1 General introduction.- 3.2 Introduction to scanning probe microscopy techniques.- 3.3 Carbohydrates.- 3.4 Chromosomes, DNA and bases.- 3.5 Proteins.- 3.6 Cells.- 3.7 Conclusions and future prospects.- References.- 4. Electron Spin Resonance Spectroscopy for Detection of Irradiated Food.- 4.1 Introduction.- 4.2 Uses of irradiation in the food industry.- 4.3 Development of detection methods.- 4.4 Principles of electron spin resonance.- 4.5 Factors affecting spectral derivation.- 4.6 Application of ESR spectroscopy to detection of irradiated foods.- 4.7 Packaging materials.- 4.8 Multilaboratory intercomparisons.- 4.9 The future of ESR detection.- References.- 5. Ultracentrifugation of Food Biopolymers.- 5.1 Introduction and historical comment.- 5.2 Types of analytical ultracentrifuge measurement.- 5.3 Instrumentation/optical systems.- 5.4 Sedimentation velocity: shape analysis and homogeneity.- 5.5 Sedimentation equilibrium: molecular weight distribution analysis.- 5.6 Analytical density gradient sedimentation equilibrium.- References.- 6. Rheology of Biopolymer Solutions and Gels.- 6.1 Introduction.- 6.2 Biopolymer size and shape.- 6.3 Concentration regimes.- 6.4 Oscillatory measurements: mechanical spectroscopy.- 6.5 Time-temperature superposition.- Acknowledgement.- References.- 7. Fracture Mechanics of SolidFoods.- 7.1 Introduction.- 7.2 Fracture mechanics.- 7.3 Methods to evaluate fracture properties.- Acknowledgement.- References.- 8. Recent Developments in Infrared Spectroscopy and Microscopy.- 8.1 Introduction.- 8.2 Theory.- 8.3 Applications.- 8.4 Conclusions.- Acknowledgements.- References.- 9. Ultrasound Studies of Shelf-Life and Crystallization.- 9.1 Introduction.- 9.2 Theoretical background.- 9.3 Crystallization in emulsions.- 9.4 Creaming in emulsions.- 9.5 Conclusions.- References.- 10. Dynamic Surface Tension and Dilational Interfacial Properties.- 10.1 Introduction.- 10.2 Overflowing cylinder technique.- 10.3 Free falling film technique.- 10.4 Ring trough technique.- 10.5 Caterpillar trough technique.- 10.6 Mannheimer trough technique.- References.- 11. Light Scattering Studies of Colloid Stability and Gelation.- 11.1 Introduction.- 11.2 Light scattering background.- 11.3 Dynamic light scattering from concentrated opaque suspensions.- 11.4 Dynamic light scattering from gelling systems.- Acknowledgement.- References.- 12. Small-Angle Neutron Scattering and Neutron Reflection.- 12.1 Introduction.- 12.2 Principles of scattering methods.- 12.3 Why use neutrons?.- 12.4 Small-angle neutron scattering (SANS).- 12.5 Neutron reflectometry.- 12.6 Outlook.- Acknowledgements.- References.- 13. High Resolution Nuclear Magnetic Resonance Spectroscopy of Solid and Semi-Solid Food Components.- 13.1 General considerations.- 13.2 Chemical information: molecular conformation and order.- 13.3 Physical information: mobility-resolved spectroscopy.- 13.4 Agarose, ?-carrageenan and ?-carrageenan.- 13.5 Summary and future challenges.- References.- 14. Magnetic Resonance Imaging in Food Science.- 14.1 Introduction.- 14.2 Principles of magnetic resonance imaging.- 14.3 Overview ofapplications.- 14.4 Quantitative imaging protocols.- 14.5 Application of T2-weighted radial imaging protocol to rehydration of extruded pasta.- 14.6 Theoretical modelling of moisture profiles.- 14.7 Conclusions.- References.
Advances In Electron Microscopy. Imaging Food Systems by Confocal Laser Scanning Microscopy. Scanning Probe Microscopy of Food-Related Systems. Electron Spin Resonance Spectroscopy for Detection of Irradiated Food. Ultracentrifugation of Food Biopolymers. Rheology of Bipolymer Solutions and Gels. Fracture Mechanics of Solid Foods. Recent Developments in Infrared Spectroscopy and Microscopy. Ultrasound Studies of Shelf-Life and Crystallization. Dynamic Surface Tension and Dilatational Interfacial Properties. Light Scattering Studies of Colloid Stability and Gelation. Small-Angle Neutron Scattering and Neutron Reflection. High Resolution Nuclear Magnetic Resonance Spectroscopy of Solid and Semi-Solid Food Components. Magnetic Resonance Imaging in Food Science. References. Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826