Christian Julien / J.P. Pereira-Ramos / A. Momchilov (Hgg.)
New Trends in Intercalation Compounds for Energy Storage
Herausgegeben:Julien, Christian; Pereira-Ramos, J. P.; Momchilov, A.
Christian Julien / J.P. Pereira-Ramos / A. Momchilov (Hgg.)
New Trends in Intercalation Compounds for Energy Storage
Herausgegeben:Julien, Christian; Pereira-Ramos, J. P.; Momchilov, A.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation…mehr
Andere Kunden interessierten sich auch für
- JulienNew Trends in Intercalation Compounds for Energy Storage168,99 €
- Christian Julien / Z. Stoynov (Hgg.)Materials for Lithium-Ion Batteries371,99 €
- H. Weinstock / Martin Nisenoff (Hgg.)Microwave Superconductivity168,99 €
- Radislav A. Potyrailo / Eric J. Amis (eds.)High-Throughput Analysis208,99 €
- Ahmed A. YoussefNanometer CMOS RFICs for Mobile TV Applications74,99 €
- Ahmed A. YoussefNanometer CMOS Rfics for Mobile TV Applications74,99 €
- M. GooseyPlastics for Electronics110,99 €
-
-
-
Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- NATO Science Series II Mathematics, Physics and Chemistry 61
- Verlag: Springer / Springer Netherlands
- Artikelnr. des Verlages: 11262701, 978-1-4020-0594-7
- 2002 edition
- Seitenzahl: 654
- Erscheinungstermin: 30. April 2002
- Englisch
- Abmessung: 241mm x 164mm x 43mm
- Gewicht: 1111g
- ISBN-13: 9781402005947
- ISBN-10: 1402005946
- Artikelnr.: 24451092
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- NATO Science Series II Mathematics, Physics and Chemistry 61
- Verlag: Springer / Springer Netherlands
- Artikelnr. des Verlages: 11262701, 978-1-4020-0594-7
- 2002 edition
- Seitenzahl: 654
- Erscheinungstermin: 30. April 2002
- Englisch
- Abmessung: 241mm x 164mm x 43mm
- Gewicht: 1111g
- ISBN-13: 9781402005947
- ISBN-10: 1402005946
- Artikelnr.: 24451092
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Preface. Acknowledgements. Part 1: Lectures. Intercalation compounds for energy storage; C. Julien, et al. Lithium intercalation compounds - The reliability of the rigid-band model; C. Julien. Overview of carbon anodes for lithium-ion batteries; K. Zaghib, K. Kinoshita. Electronic structure of various forms of solid state carbons - Graphite intercalation compounds; J. Conard. From intercalation compounds to inserted clusters e.g. Li in carbon superanodes for secondary batteries; J. Conard. Lithium NMR in lithium-carbon solid state compounds; J. Conard, P. Lauginie. Critical review of H/Carbon literature and ab-initio research for a chemical site between two coronenes; F. Marinelli, et al. Carbon-based negative electrodes of lithium-ion batteries obtained from residua of the petroleum industry; R. Alcántara, et al. Hydrogen in metals; J. Huot. Effects of composition in La/Ni-based intermetallic compounds used as negative electrodes in Ni-MH batteries; R. Baddour-Hadjean, et al. Lithium insertion compounds for energy storage; A. Manthiram. Chemical and structural stabilities of layered oxide cathodes; A. Manthiram. In situ preparation of composite electrodes: antimony alloys and compounds; R. Alcántara, et al. On the use of in-situ generated tin-based composite materials in lithium-ion cells; R. Alcántara, et al. Physical chemistry of lithium intercalation compounds; C. Julien. Lattice dynamics of manganese oxides and their intercalated compounds; C. Julien, M. Massot. Physical chemistry and electrochemistry of intercalation in disordered compounds; C. Julien, B. Yebka. Modifief host lattices for Li intercalation with improved electrochemical properties; J.P. Pereira-Ramos, et al. Surface science investigations of intercalation reactions with layeredmetaldichalcogenides; W. Jaegermann, D. Tonti. Conductive polymers and hybrid materials as insertion electrodes for energy storage applications; P. Gómez-Romero. An electrochemical point of view on the intercalation compounds; A. Momchilov. Manganese dioxides promising cathode materials for lithium batteries; B. Banov. Part 2: Seminars. Impedance of diffusion of inserted ions. Simple and advanced models; J. Bisquert. Dielectric relaxation spectroscopy for probing ion/network interactions in solids F. Henn, et al. Cations mobility and water adsorption in zeolites; G. Maurin, et al. Strategies to improve the cycling performance of lithium storage alloys; M. Wachtler, et al. Nanoscaled containers for hydrogen; I.D. Dragieva, et al. Nanocrystalline materials for lithium batteries; C.W. Kwon, et al. Study of fluorinated graphite intercalation compounds; I.P. Asanov, et al. Insertion of rare-earth metals into AgI-based compounds - First evidence of disordering and strong modification of ß- and a-AgI crystal structures; A.L. Despotuli. Structural characterization of Mg treated LiCoO2 intercalation compounds; R. Stoyanova, et al. Electronic structure of oxygen in delitiated LiTMO2 studied by electron energy-loss spectrometry; J. Graetz, et al. Short-range Co/Mn ordering and electrochemical intercalation of Li into Li[Mn2-yCoy]O4 spinels, 0
Preface. Acknowledgements. Part 1: Lectures. Intercalation compounds for energy storage; C. Julien, et al. Lithium intercalation compounds - The reliability of the rigid-band model; C. Julien. Overview of carbon anodes for lithium-ion batteries; K. Zaghib, K. Kinoshita. Electronic structure of various forms of solid state carbons - Graphite intercalation compounds; J. Conard. From intercalation compounds to inserted clusters e.g. Li in carbon superanodes for secondary batteries; J. Conard. Lithium NMR in lithium-carbon solid state compounds; J. Conard, P. Lauginie. Critical review of H/Carbon literature and ab-initio research for a chemical site between two coronenes; F. Marinelli, et al. Carbon-based negative electrodes of lithium-ion batteries obtained from residua of the petroleum industry; R. Alcántara, et al. Hydrogen in metals; J. Huot. Effects of composition in La/Ni-based intermetallic compounds used as negative electrodes in Ni-MH batteries; R. Baddour-Hadjean, et al. Lithium insertion compounds for energy storage; A. Manthiram. Chemical and structural stabilities of layered oxide cathodes; A. Manthiram. In situ preparation of composite electrodes: antimony alloys and compounds; R. Alcántara, et al. On the use of in-situ generated tin-based composite materials in lithium-ion cells; R. Alcántara, et al. Physical chemistry of lithium intercalation compounds; C. Julien. Lattice dynamics of manganese oxides and their intercalated compounds; C. Julien, M. Massot. Physical chemistry and electrochemistry of intercalation in disordered compounds; C. Julien, B. Yebka. Modifief host lattices for Li intercalation with improved electrochemical properties; J.P. Pereira-Ramos, et al. Surface science investigations of intercalation reactions with layeredmetaldichalcogenides; W. Jaegermann, D. Tonti. Conductive polymers and hybrid materials as insertion electrodes for energy storage applications; P. Gómez-Romero. An electrochemical point of view on the intercalation compounds; A. Momchilov. Manganese dioxides promising cathode materials for lithium batteries; B. Banov. Part 2: Seminars. Impedance of diffusion of inserted ions. Simple and advanced models; J. Bisquert. Dielectric relaxation spectroscopy for probing ion/network interactions in solids F. Henn, et al. Cations mobility and water adsorption in zeolites; G. Maurin, et al. Strategies to improve the cycling performance of lithium storage alloys; M. Wachtler, et al. Nanoscaled containers for hydrogen; I.D. Dragieva, et al. Nanocrystalline materials for lithium batteries; C.W. Kwon, et al. Study of fluorinated graphite intercalation compounds; I.P. Asanov, et al. Insertion of rare-earth metals into AgI-based compounds - First evidence of disordering and strong modification of ß- and a-AgI crystal structures; A.L. Despotuli. Structural characterization of Mg treated LiCoO2 intercalation compounds; R. Stoyanova, et al. Electronic structure of oxygen in delitiated LiTMO2 studied by electron energy-loss spectrometry; J. Graetz, et al. Short-range Co/Mn ordering and electrochemical intercalation of Li into Li[Mn2-yCoy]O4 spinels, 0