- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dieses Buch beschreibt verschiedene Techniken, die Mikrostruktur von Polymeren zu analysieren. Der Autor stellt vor allem die Vorzüge der hochauflösenden NMR-Spektroskopie in Lösung und in festem Zustand vor und diskutiert deren Anwendung auf biologische und synthetische Polymere. Er zeigt, daß die Interpretation der NMR-Spektren in bezug auf die Mikrostruktur durch Betrachtung der lokalen Polymer-Konformation gelingt. Die zahlreichen Beispiele und Abbildungen, die diese Beziehung verdeutlichen, sind ein besonders auffälliges Merkmal des Buches. Sie helfen auch dem Neuling auf diesem Gebiet,…mehr
Andere Kunden interessierten sich auch für
- W. R. Croasmun / Robert M. K. Carlson (Hgg.)Two-Dimensional NMR Spectroscopy452,99 €
- Harald GüntherNMR Spectroscopy78,99 €
- G. E. MartinTwo-Dimensional NMR Methods for Establishing Molecular Connectivity467,99 €
- Raymond AbrahamModelling 1h NMR Spectra of Organic Compounds155,99 €
- Klaus Albert (Hrsg.)On-Line LC-NMR and Related Techniques305,99 €
- Christian SchornNMR Spectroscopy, Data Acquisition, w. CD-ROM157,99 €
- David NeuhausThe Nuclear Overhauser Effect in Structural and Conformational Analysis334,99 €
-
-
-
Dieses Buch beschreibt verschiedene Techniken, die Mikrostruktur von Polymeren zu analysieren. Der Autor stellt vor allem die Vorzüge der hochauflösenden NMR-Spektroskopie in Lösung und in festem Zustand vor und diskutiert deren Anwendung auf biologische und synthetische Polymere. Er zeigt, daß die Interpretation der NMR-Spektren in bezug auf die Mikrostruktur durch Betrachtung der lokalen Polymer-Konformation gelingt. Die zahlreichen Beispiele und Abbildungen, die diese Beziehung verdeutlichen, sind ein besonders auffälliges Merkmal des Buches. Sie helfen auch dem Neuling auf diesem Gebiet, die Mikrostruktur von Polymeren zuverlässig bestimmen zu können.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Methods in Stereochemical Analysis
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 264
- Erscheinungstermin: 6. September 1989
- Englisch
- Abmessung: 240mm x 161mm x 19mm
- Gewicht: 510g
- ISBN-13: 9780471187486
- ISBN-10: 0471187488
- Artikelnr.: 13877428
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Methods in Stereochemical Analysis
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 264
- Erscheinungstermin: 6. September 1989
- Englisch
- Abmessung: 240mm x 161mm x 19mm
- Gewicht: 510g
- ISBN-13: 9780471187486
- ISBN-10: 0471187488
- Artikelnr.: 13877428
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Alan Tonelli received a B.S. in Chemical Engineering from the University of Kansas in 1964 and a Ph.D. in Polymer Chemistry from Stanford in 1968, where he was associated with the late Professor Paul J. Flory. He was a member of the Polymer Chemistry Research Department at AT&T-Bell Laboratories, Murray Hill, NJ, for 23 years and in 1991 joined the Fiber & Polymer Science Program in the College of Textiles at North Carolina State University in Raleigh, NC, where he is currently the INVISTA Professor of Fiber and Polymer Chemistry. His research interests include the configurations, conformations, and structures of synthetic and biological polymers, their determination, principally by NMR and Kerr effect observations, and establishing their effects on the physical properties of polymer materials. Most recently, the formation of and coalescence from noncovalent crystalline inclusion compounds (ICs) formed between cyclodextrin (CD) hosts and polymer guests have been used to nanostructure bulk polymers, including homopolymers and their blends, and block copolymers. In addition, small-molecule guest-CD-ICs (crystalline) and -rotaxanes (soluble), and the covalent incorporation of CDs into polymers both during and subsequent to their syntheses, have been used to improve the delivery of additives to polymer materials.
Preface
1. The Microstructure of Polymer Chains
1.1 Introduction
1.2 Polymers Are Macromolecules
1.3 Polymer Microstructures from Polymerization of Monomers
1.3.1 Directional Isomerism
1.3.2 Stereochemical Isomerism
1.3.3 Geometrical Isomerism
1.3.4 Truly Asymmetric Polymers
1.3.5 Copolymer Sequences
1.4 Organization of Polymer Chains
1.5 Polymer Properties and Their Relation to Microstructure
2. Nuclear Magnetic Resonance
2.1 Introduction
2.2 The NMR Phenomenon
2.2.1 Resonance
2.2.2 Interactions and Relaxations of Nuclear Spins
2.2.3 Chemical Shift
2.2.4 Spin-Spin Coupling
2.3 Experimental Observation of NMR
3. High-Resolution NMR of Polymers
3.1 Introduction
3.2 ¯1H NMR
3.3 ¯13C NMR
3.4 High-Resolution ¯13C NMR in the Solid State
3.4.1 Dipolar Broadening
3.4.2 Chemical-Shift Anisotropy
3.4.3 Cross-Polarization
3.5 Two-Dimensional NMR
3.6 Other Nuclei-¯15N, ¯19F, ¯29Si, and ¯31p
4. ¯13C NMR of Polymers
4.1 Introduction
4.2 ¯13C Chemical Shifts and Their Dependence on Microstructure
4.2.1 ¯13C Nuclear Shielding
4.2.2 Substituent Effects on ¯13C Chemical Shifts
4.2.3 The -Substituent Effect in ¯13C NMR
4.2.4 -gauche Effects in ¯13C NMR
5. -gauche Effect Method of Predicting ¯13C NMR Chemical Shifts
5.1 Introduction
5.2 Polymer Conformations
5.2.1 Rotational Isomeric-State Model of Polymers
5.2.2 Average Bond Conformations
5.3 -gauche Effect Calculation of ¯13C NMR Chemical Shifts
5.3.1 Small-Molecule Example
5.3.2 Macromolecular Example
6. Determination of Stereosequences in Vinyl Polymers
6.1 Introduction
6.2 Traditional Methods
6.2.1 Stereoregular Polymers
6.2.2 Epimerization of Stereoregular Polymers
6.2.3 Model Compounds
6.2.4 Assumed Polymerization Mechanism
6.3 2D NMR Determination of Vinyl Polymer Stereosequence
6.4 Application of -gauche Effect Method
6.5 Establishing Vinyl Polymerization Mechanisms from Stereosequence
Analysis
7. Microstructural Defects in Polymers
7.1 Introduction
7.2 Determining the Regiosequence of PVF_2
7.2.1 ¯13C NMR
7.2.2 ¯19F NMR
7.2.3 2D ¯19F NMR
7.3 Regiosequence Defects in PPO
8. Copolymer Microstructure
8.1 Introduction
8.2 Comonomer Sequences
8.3 Copolymer Stereosequences
8.4 Copolymer Conformations
8.5 Copolymerization Mechanisms
9. Chemically Modified Polymers
9.1 Introduction
9.2 Transformation of PVC to Ethylene-Vinyl Chloride Copolymers
9.2.1 Tri-n-butyltin Hydride Reduction of PVC
9.2.2 Microstructures of E-V Copolymers
9.2.3 (n-Bu)_3SnH Reduction of PVC Model Compounds
9.2.4 Computer Simulation of TCH and PVC Reduction
9.3 Modification of 1,4-Poly(butadienes) with Dihalocarbenes
9.3.1 Possible Microstructures in the Dihalocarbene Adducts of PBD
9.3.2 NMR of Dihalocarbene Adducts of PBD
10. Biopolymers
10.1 Introduction
10.2 Polypeptides
10.2.1 2D NMR Assignment of ¯1H Resonances
10.2.2 Determination of Polypeptide Conformation by 2D NMR
10.3 Polynucleotides
10.4 Polysaccharides
11. Solid Polymers
11.1 Introduction
11.2 Solid-State Polymer Conformation
11.3 Interchain Packing in Solid Polymers
11.4 Molecular Motion in Solid Polymers
11.5 Application of CPMAS/DD ¯13C NMR to Solid Polymers
11.5.1 Morphology and Motion in Polymer Crystals
11.5.2 Solid-Solid Polymer Phase Transitions
11.6 Other Nuclei Observed In Solid-State Polymer Spectra
11.6.1 CPMAS/DD ¯29Si NMR
11.6.2 MAS/DD ¯31p NMR
11.6.3 CPMAS/DD ¯15N NMR
11.7 Concluding Remarks
1. The Microstructure of Polymer Chains
1.1 Introduction
1.2 Polymers Are Macromolecules
1.3 Polymer Microstructures from Polymerization of Monomers
1.3.1 Directional Isomerism
1.3.2 Stereochemical Isomerism
1.3.3 Geometrical Isomerism
1.3.4 Truly Asymmetric Polymers
1.3.5 Copolymer Sequences
1.4 Organization of Polymer Chains
1.5 Polymer Properties and Their Relation to Microstructure
2. Nuclear Magnetic Resonance
2.1 Introduction
2.2 The NMR Phenomenon
2.2.1 Resonance
2.2.2 Interactions and Relaxations of Nuclear Spins
2.2.3 Chemical Shift
2.2.4 Spin-Spin Coupling
2.3 Experimental Observation of NMR
3. High-Resolution NMR of Polymers
3.1 Introduction
3.2 ¯1H NMR
3.3 ¯13C NMR
3.4 High-Resolution ¯13C NMR in the Solid State
3.4.1 Dipolar Broadening
3.4.2 Chemical-Shift Anisotropy
3.4.3 Cross-Polarization
3.5 Two-Dimensional NMR
3.6 Other Nuclei-¯15N, ¯19F, ¯29Si, and ¯31p
4. ¯13C NMR of Polymers
4.1 Introduction
4.2 ¯13C Chemical Shifts and Their Dependence on Microstructure
4.2.1 ¯13C Nuclear Shielding
4.2.2 Substituent Effects on ¯13C Chemical Shifts
4.2.3 The -Substituent Effect in ¯13C NMR
4.2.4 -gauche Effects in ¯13C NMR
5. -gauche Effect Method of Predicting ¯13C NMR Chemical Shifts
5.1 Introduction
5.2 Polymer Conformations
5.2.1 Rotational Isomeric-State Model of Polymers
5.2.2 Average Bond Conformations
5.3 -gauche Effect Calculation of ¯13C NMR Chemical Shifts
5.3.1 Small-Molecule Example
5.3.2 Macromolecular Example
6. Determination of Stereosequences in Vinyl Polymers
6.1 Introduction
6.2 Traditional Methods
6.2.1 Stereoregular Polymers
6.2.2 Epimerization of Stereoregular Polymers
6.2.3 Model Compounds
6.2.4 Assumed Polymerization Mechanism
6.3 2D NMR Determination of Vinyl Polymer Stereosequence
6.4 Application of -gauche Effect Method
6.5 Establishing Vinyl Polymerization Mechanisms from Stereosequence
Analysis
7. Microstructural Defects in Polymers
7.1 Introduction
7.2 Determining the Regiosequence of PVF_2
7.2.1 ¯13C NMR
7.2.2 ¯19F NMR
7.2.3 2D ¯19F NMR
7.3 Regiosequence Defects in PPO
8. Copolymer Microstructure
8.1 Introduction
8.2 Comonomer Sequences
8.3 Copolymer Stereosequences
8.4 Copolymer Conformations
8.5 Copolymerization Mechanisms
9. Chemically Modified Polymers
9.1 Introduction
9.2 Transformation of PVC to Ethylene-Vinyl Chloride Copolymers
9.2.1 Tri-n-butyltin Hydride Reduction of PVC
9.2.2 Microstructures of E-V Copolymers
9.2.3 (n-Bu)_3SnH Reduction of PVC Model Compounds
9.2.4 Computer Simulation of TCH and PVC Reduction
9.3 Modification of 1,4-Poly(butadienes) with Dihalocarbenes
9.3.1 Possible Microstructures in the Dihalocarbene Adducts of PBD
9.3.2 NMR of Dihalocarbene Adducts of PBD
10. Biopolymers
10.1 Introduction
10.2 Polypeptides
10.2.1 2D NMR Assignment of ¯1H Resonances
10.2.2 Determination of Polypeptide Conformation by 2D NMR
10.3 Polynucleotides
10.4 Polysaccharides
11. Solid Polymers
11.1 Introduction
11.2 Solid-State Polymer Conformation
11.3 Interchain Packing in Solid Polymers
11.4 Molecular Motion in Solid Polymers
11.5 Application of CPMAS/DD ¯13C NMR to Solid Polymers
11.5.1 Morphology and Motion in Polymer Crystals
11.5.2 Solid-Solid Polymer Phase Transitions
11.6 Other Nuclei Observed In Solid-State Polymer Spectra
11.6.1 CPMAS/DD ¯29Si NMR
11.6.2 MAS/DD ¯31p NMR
11.6.3 CPMAS/DD ¯15N NMR
11.7 Concluding Remarks
Preface
1. The Microstructure of Polymer Chains
1.1 Introduction
1.2 Polymers Are Macromolecules
1.3 Polymer Microstructures from Polymerization of Monomers
1.3.1 Directional Isomerism
1.3.2 Stereochemical Isomerism
1.3.3 Geometrical Isomerism
1.3.4 Truly Asymmetric Polymers
1.3.5 Copolymer Sequences
1.4 Organization of Polymer Chains
1.5 Polymer Properties and Their Relation to Microstructure
2. Nuclear Magnetic Resonance
2.1 Introduction
2.2 The NMR Phenomenon
2.2.1 Resonance
2.2.2 Interactions and Relaxations of Nuclear Spins
2.2.3 Chemical Shift
2.2.4 Spin-Spin Coupling
2.3 Experimental Observation of NMR
3. High-Resolution NMR of Polymers
3.1 Introduction
3.2 ¯1H NMR
3.3 ¯13C NMR
3.4 High-Resolution ¯13C NMR in the Solid State
3.4.1 Dipolar Broadening
3.4.2 Chemical-Shift Anisotropy
3.4.3 Cross-Polarization
3.5 Two-Dimensional NMR
3.6 Other Nuclei-¯15N, ¯19F, ¯29Si, and ¯31p
4. ¯13C NMR of Polymers
4.1 Introduction
4.2 ¯13C Chemical Shifts and Their Dependence on Microstructure
4.2.1 ¯13C Nuclear Shielding
4.2.2 Substituent Effects on ¯13C Chemical Shifts
4.2.3 The -Substituent Effect in ¯13C NMR
4.2.4 -gauche Effects in ¯13C NMR
5. -gauche Effect Method of Predicting ¯13C NMR Chemical Shifts
5.1 Introduction
5.2 Polymer Conformations
5.2.1 Rotational Isomeric-State Model of Polymers
5.2.2 Average Bond Conformations
5.3 -gauche Effect Calculation of ¯13C NMR Chemical Shifts
5.3.1 Small-Molecule Example
5.3.2 Macromolecular Example
6. Determination of Stereosequences in Vinyl Polymers
6.1 Introduction
6.2 Traditional Methods
6.2.1 Stereoregular Polymers
6.2.2 Epimerization of Stereoregular Polymers
6.2.3 Model Compounds
6.2.4 Assumed Polymerization Mechanism
6.3 2D NMR Determination of Vinyl Polymer Stereosequence
6.4 Application of -gauche Effect Method
6.5 Establishing Vinyl Polymerization Mechanisms from Stereosequence
Analysis
7. Microstructural Defects in Polymers
7.1 Introduction
7.2 Determining the Regiosequence of PVF_2
7.2.1 ¯13C NMR
7.2.2 ¯19F NMR
7.2.3 2D ¯19F NMR
7.3 Regiosequence Defects in PPO
8. Copolymer Microstructure
8.1 Introduction
8.2 Comonomer Sequences
8.3 Copolymer Stereosequences
8.4 Copolymer Conformations
8.5 Copolymerization Mechanisms
9. Chemically Modified Polymers
9.1 Introduction
9.2 Transformation of PVC to Ethylene-Vinyl Chloride Copolymers
9.2.1 Tri-n-butyltin Hydride Reduction of PVC
9.2.2 Microstructures of E-V Copolymers
9.2.3 (n-Bu)_3SnH Reduction of PVC Model Compounds
9.2.4 Computer Simulation of TCH and PVC Reduction
9.3 Modification of 1,4-Poly(butadienes) with Dihalocarbenes
9.3.1 Possible Microstructures in the Dihalocarbene Adducts of PBD
9.3.2 NMR of Dihalocarbene Adducts of PBD
10. Biopolymers
10.1 Introduction
10.2 Polypeptides
10.2.1 2D NMR Assignment of ¯1H Resonances
10.2.2 Determination of Polypeptide Conformation by 2D NMR
10.3 Polynucleotides
10.4 Polysaccharides
11. Solid Polymers
11.1 Introduction
11.2 Solid-State Polymer Conformation
11.3 Interchain Packing in Solid Polymers
11.4 Molecular Motion in Solid Polymers
11.5 Application of CPMAS/DD ¯13C NMR to Solid Polymers
11.5.1 Morphology and Motion in Polymer Crystals
11.5.2 Solid-Solid Polymer Phase Transitions
11.6 Other Nuclei Observed In Solid-State Polymer Spectra
11.6.1 CPMAS/DD ¯29Si NMR
11.6.2 MAS/DD ¯31p NMR
11.6.3 CPMAS/DD ¯15N NMR
11.7 Concluding Remarks
1. The Microstructure of Polymer Chains
1.1 Introduction
1.2 Polymers Are Macromolecules
1.3 Polymer Microstructures from Polymerization of Monomers
1.3.1 Directional Isomerism
1.3.2 Stereochemical Isomerism
1.3.3 Geometrical Isomerism
1.3.4 Truly Asymmetric Polymers
1.3.5 Copolymer Sequences
1.4 Organization of Polymer Chains
1.5 Polymer Properties and Their Relation to Microstructure
2. Nuclear Magnetic Resonance
2.1 Introduction
2.2 The NMR Phenomenon
2.2.1 Resonance
2.2.2 Interactions and Relaxations of Nuclear Spins
2.2.3 Chemical Shift
2.2.4 Spin-Spin Coupling
2.3 Experimental Observation of NMR
3. High-Resolution NMR of Polymers
3.1 Introduction
3.2 ¯1H NMR
3.3 ¯13C NMR
3.4 High-Resolution ¯13C NMR in the Solid State
3.4.1 Dipolar Broadening
3.4.2 Chemical-Shift Anisotropy
3.4.3 Cross-Polarization
3.5 Two-Dimensional NMR
3.6 Other Nuclei-¯15N, ¯19F, ¯29Si, and ¯31p
4. ¯13C NMR of Polymers
4.1 Introduction
4.2 ¯13C Chemical Shifts and Their Dependence on Microstructure
4.2.1 ¯13C Nuclear Shielding
4.2.2 Substituent Effects on ¯13C Chemical Shifts
4.2.3 The -Substituent Effect in ¯13C NMR
4.2.4 -gauche Effects in ¯13C NMR
5. -gauche Effect Method of Predicting ¯13C NMR Chemical Shifts
5.1 Introduction
5.2 Polymer Conformations
5.2.1 Rotational Isomeric-State Model of Polymers
5.2.2 Average Bond Conformations
5.3 -gauche Effect Calculation of ¯13C NMR Chemical Shifts
5.3.1 Small-Molecule Example
5.3.2 Macromolecular Example
6. Determination of Stereosequences in Vinyl Polymers
6.1 Introduction
6.2 Traditional Methods
6.2.1 Stereoregular Polymers
6.2.2 Epimerization of Stereoregular Polymers
6.2.3 Model Compounds
6.2.4 Assumed Polymerization Mechanism
6.3 2D NMR Determination of Vinyl Polymer Stereosequence
6.4 Application of -gauche Effect Method
6.5 Establishing Vinyl Polymerization Mechanisms from Stereosequence
Analysis
7. Microstructural Defects in Polymers
7.1 Introduction
7.2 Determining the Regiosequence of PVF_2
7.2.1 ¯13C NMR
7.2.2 ¯19F NMR
7.2.3 2D ¯19F NMR
7.3 Regiosequence Defects in PPO
8. Copolymer Microstructure
8.1 Introduction
8.2 Comonomer Sequences
8.3 Copolymer Stereosequences
8.4 Copolymer Conformations
8.5 Copolymerization Mechanisms
9. Chemically Modified Polymers
9.1 Introduction
9.2 Transformation of PVC to Ethylene-Vinyl Chloride Copolymers
9.2.1 Tri-n-butyltin Hydride Reduction of PVC
9.2.2 Microstructures of E-V Copolymers
9.2.3 (n-Bu)_3SnH Reduction of PVC Model Compounds
9.2.4 Computer Simulation of TCH and PVC Reduction
9.3 Modification of 1,4-Poly(butadienes) with Dihalocarbenes
9.3.1 Possible Microstructures in the Dihalocarbene Adducts of PBD
9.3.2 NMR of Dihalocarbene Adducts of PBD
10. Biopolymers
10.1 Introduction
10.2 Polypeptides
10.2.1 2D NMR Assignment of ¯1H Resonances
10.2.2 Determination of Polypeptide Conformation by 2D NMR
10.3 Polynucleotides
10.4 Polysaccharides
11. Solid Polymers
11.1 Introduction
11.2 Solid-State Polymer Conformation
11.3 Interchain Packing in Solid Polymers
11.4 Molecular Motion in Solid Polymers
11.5 Application of CPMAS/DD ¯13C NMR to Solid Polymers
11.5.1 Morphology and Motion in Polymer Crystals
11.5.2 Solid-Solid Polymer Phase Transitions
11.6 Other Nuclei Observed In Solid-State Polymer Spectra
11.6.1 CPMAS/DD ¯29Si NMR
11.6.2 MAS/DD ¯31p NMR
11.6.3 CPMAS/DD ¯15N NMR
11.7 Concluding Remarks