The quantum statistical properties of light generated in a semiconductor laser and a light-emitting diode (LED) have been a ?eld of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices, performed mostly at Stanford University. When a semiconductor material is used as the active medium to generate photons, as in semiconductor lasers and LEDs, the ?ow of carriers (electrons andholes)isconvertedintoa?owofphotons. Providedthattheconversionis fast and e?cient, the statistical properties…mehr
The quantum statistical properties of light generated in a semiconductor laser and a light-emitting diode (LED) have been a ?eld of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices, performed mostly at Stanford University. When a semiconductor material is used as the active medium to generate photons, as in semiconductor lasers and LEDs, the ?ow of carriers (electrons andholes)isconvertedintoa?owofphotons. Providedthattheconversionis fast and e?cient, the statistical properties of the carriers ("pump noise") can be transferred to the photons; if pump noise can be suppressed to below the shot noise value, the noise in the photon output can also be suppressed below thePoissonlimit. Sinceelectronsandholesarefermionsandhavecharges,the statisticalpropertiesoftheseparticlescanbesigni?cantlydi?erentfromthose of photons if the structure of the light-emitting device is properly designed to provide interaction between these particles. There has been a discrepancy between the theoretical understanding and experimental observation of noise in a macroscopic resistor until very - cently. The dissipation that electrons experience in a resistor is expected to accompany the ?uctuation due to partition noise, leading to shot noise in the large dissipation limit as is the case with photons. Experimental observation shows that thermal noise, expected only in a thermal-equilibrium situation (zero-bias condition), is the only source of noise featured by a resistor, - dependent of the current.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Professor Yoshihisa Yamamoto has performed his research at Tokyo University, MIT, Stanford and other prestigious institutions before he became professor at Stanford. He teaches various courses on quantum optics and has published books and more than 350 papers.
Inhaltsangabe
1. Nonclassical Light.- 1.1 Classical Description of Light.- 1.2 Quantum Description of Light.- 1.3 Coherent State, Squeezed State and Number-Phase Squeezed State.- 1.4 Quantum Theory of Photodetection and Sub-Poisson Photon Distribution.- 1.5 Quantum Theory of Second-Order Coherence and Photon Antibunching.- 1.6 Quantum Theory of Photocurrent Fluctuation and Squeezing.- 2. Noise of p-n Junction Light Emitters.- 2.1 Introduction.- 2.2 Junction Voltage Dynamics: the Poisson Equation.- 2.3 Semiclassical Langevin Equation for Junction Voltage Dynamics.- 2.4 Noise Analysis of an LED.- 2.5 Summary.- 3. Sub-Poissonian Light Generation in Light-Emitting Diodes.- 3.1 Introduction.- 3.2 Physical Mechanism of Pump-Noise Suppression.- 3.3 Measurement of the Squeezing Bandwidth.- 3.4 Summary.- 4. Amplitude-Squeezed Light Generation in Semiconductor Lasers.- 4.1 Introduction.- 4.2 Interferometric Measurement of Longitudinal-Mode-Partition Noise.- 4.3 Grating-Feedback External-Cavity Semiconductor Laser.- 4.4 Injection-Locked Semiconductor Laser.- 4.5 Summary.- 5. Excess Intensity Noise of a Semiconductor Laser with Nonlinear Gain and Loss.- 5.1 Introduction.- 5.2 Physical Models for Nonlinearity.- 5.3 Noise Analysis Using Langevin Rate Equations.- 5.4 Numerical Results.- 5.5 Discussion: Effect of Saturable Loss.- 5.6 Comparison of Two Laser Structures with Respect to Saturable Loss.- 5.7 Summary.- 6. Transverse-Junction-Stripe Lasers for Squeezed Light Generation.- 6.1 Introduction.- 6.2 Fabrication.- 6.3 DC Characterization: Threshold, Loss and Quantum Efficiency.- 6.4 Intensity Noise.- 6.5 Summary.- 7. Sub-Shot-Noise FM Spectroscopy.- 7.1 Introduction.- 7.2 Advantages of Semiconductor Lasers.- 7.3 Signal-to-Noise Ratio (SNR).- 7.4 Realization of Sub-Shot-Noise FM Spectroscopy.- 7.5 Experimental Results.- 7.6 Future Prospects.- 8. Sub-Shot-Noise FM Noise Spectroscopy.- 8.1 Introduction.- 8.2 Principle of FM Noise Spectroscopy.- 8.3 Signal-to-Noise Ratio and the Advantage of Amplitude Squeezing.- 8.4 Sub-Shot-Noise Spectroscopy.- 8.5 Phase-Sensitive FM Noise Spectroscopy.- 8.6 Summary.- 9. Sub-Shot-Noise Interferometry.- 9.1 Introduction.- 9.2 Sensitivity Limit of an Optical Interferometer.- 9.3 Amplitude-Squeezed Light Injection in a Dual-Input Mach-Zehnder Interferometer.- 9.4 Sub-Shot-Noise Phase Measurement.- 9.5 Dual-Input Michelson Interferometer.- 9.6 Summary and Future Prospects.- 10. Coulomb Blockade Effect in Mesoscopic p-n Junctions.- 10.1 Introduction.- 10.2 Calculation of Resonant Tunneling Rates.- 10.3 Coulomb Blockade Effect on Resonant Tunneling.- 10.4 Coulomb Staircase.- 10.5 Turnstile Operation.- 10.6 Monte-Carlo Simulations.- 10.7 Summary.- 11. Single-Photon Generation in a Single-Photon Turnstile Device.- 11.1 Introduction.- 11.2 Device Fabrication.- 11.3 Observation of the Coulomb Staircase.- 11.4 Single-Photon Turnstile Device.- 11.5 Summary.- 12. Single-Photon Detection with Visible-Light Photon Counter.- 12.1 Introduction.- 12.2 Comparison of Single-Photon Detectors.- 12.3 Operation Principle of a VLPC.- 12.4 Single-Photon Detection System Based on a VLPC.- 12.5 Quantum Efficiency of a VLPC.- 12.6 Theory of Noise in Avalanche Multiplication.- 12.7 Excess Noise Factor of a VLPC.- 12.8 Two-Photon Detection with a VLPC.- 12.9 Summary.- 13. Future Prospects.- 13.1 Introduction.- 13.2 Regulated and Entangled Photons from a Single Quantum Dot.- 13.3 Single-Mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity.- 13.4 Lasing and Squeezing of Exciton-Polaritons in a Semiconductor Microcavity.- A. Appendix: Noise and Correlation Spectra for Light-Emitting Diode.- A.1 Linearization.- A.2 LED Photon Noise Spectral Density.- A.3 External Current Noise Spectral Density.- A.4 Junction-Voltage-Carrier-Number Correlation.- A.5 Photon-Flux -Junction-Voltage Correlation.- References.
1. Nonclassical Light.- 1.1 Classical Description of Light.- 1.2 Quantum Description of Light.- 1.3 Coherent State, Squeezed State and Number-Phase Squeezed State.- 1.4 Quantum Theory of Photodetection and Sub-Poisson Photon Distribution.- 1.5 Quantum Theory of Second-Order Coherence and Photon Antibunching.- 1.6 Quantum Theory of Photocurrent Fluctuation and Squeezing.- 2. Noise of p-n Junction Light Emitters.- 2.1 Introduction.- 2.2 Junction Voltage Dynamics: the Poisson Equation.- 2.3 Semiclassical Langevin Equation for Junction Voltage Dynamics.- 2.4 Noise Analysis of an LED.- 2.5 Summary.- 3. Sub-Poissonian Light Generation in Light-Emitting Diodes.- 3.1 Introduction.- 3.2 Physical Mechanism of Pump-Noise Suppression.- 3.3 Measurement of the Squeezing Bandwidth.- 3.4 Summary.- 4. Amplitude-Squeezed Light Generation in Semiconductor Lasers.- 4.1 Introduction.- 4.2 Interferometric Measurement of Longitudinal-Mode-Partition Noise.- 4.3 Grating-Feedback External-Cavity Semiconductor Laser.- 4.4 Injection-Locked Semiconductor Laser.- 4.5 Summary.- 5. Excess Intensity Noise of a Semiconductor Laser with Nonlinear Gain and Loss.- 5.1 Introduction.- 5.2 Physical Models for Nonlinearity.- 5.3 Noise Analysis Using Langevin Rate Equations.- 5.4 Numerical Results.- 5.5 Discussion: Effect of Saturable Loss.- 5.6 Comparison of Two Laser Structures with Respect to Saturable Loss.- 5.7 Summary.- 6. Transverse-Junction-Stripe Lasers for Squeezed Light Generation.- 6.1 Introduction.- 6.2 Fabrication.- 6.3 DC Characterization: Threshold, Loss and Quantum Efficiency.- 6.4 Intensity Noise.- 6.5 Summary.- 7. Sub-Shot-Noise FM Spectroscopy.- 7.1 Introduction.- 7.2 Advantages of Semiconductor Lasers.- 7.3 Signal-to-Noise Ratio (SNR).- 7.4 Realization of Sub-Shot-Noise FM Spectroscopy.- 7.5 Experimental Results.- 7.6 Future Prospects.- 8. Sub-Shot-Noise FM Noise Spectroscopy.- 8.1 Introduction.- 8.2 Principle of FM Noise Spectroscopy.- 8.3 Signal-to-Noise Ratio and the Advantage of Amplitude Squeezing.- 8.4 Sub-Shot-Noise Spectroscopy.- 8.5 Phase-Sensitive FM Noise Spectroscopy.- 8.6 Summary.- 9. Sub-Shot-Noise Interferometry.- 9.1 Introduction.- 9.2 Sensitivity Limit of an Optical Interferometer.- 9.3 Amplitude-Squeezed Light Injection in a Dual-Input Mach-Zehnder Interferometer.- 9.4 Sub-Shot-Noise Phase Measurement.- 9.5 Dual-Input Michelson Interferometer.- 9.6 Summary and Future Prospects.- 10. Coulomb Blockade Effect in Mesoscopic p-n Junctions.- 10.1 Introduction.- 10.2 Calculation of Resonant Tunneling Rates.- 10.3 Coulomb Blockade Effect on Resonant Tunneling.- 10.4 Coulomb Staircase.- 10.5 Turnstile Operation.- 10.6 Monte-Carlo Simulations.- 10.7 Summary.- 11. Single-Photon Generation in a Single-Photon Turnstile Device.- 11.1 Introduction.- 11.2 Device Fabrication.- 11.3 Observation of the Coulomb Staircase.- 11.4 Single-Photon Turnstile Device.- 11.5 Summary.- 12. Single-Photon Detection with Visible-Light Photon Counter.- 12.1 Introduction.- 12.2 Comparison of Single-Photon Detectors.- 12.3 Operation Principle of a VLPC.- 12.4 Single-Photon Detection System Based on a VLPC.- 12.5 Quantum Efficiency of a VLPC.- 12.6 Theory of Noise in Avalanche Multiplication.- 12.7 Excess Noise Factor of a VLPC.- 12.8 Two-Photon Detection with a VLPC.- 12.9 Summary.- 13. Future Prospects.- 13.1 Introduction.- 13.2 Regulated and Entangled Photons from a Single Quantum Dot.- 13.3 Single-Mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity.- 13.4 Lasing and Squeezing of Exciton-Polaritons in a Semiconductor Microcavity.- A. Appendix: Noise and Correlation Spectra for Light-Emitting Diode.- A.1 Linearization.- A.2 LED Photon Noise Spectral Density.- A.3 External Current Noise Spectral Density.- A.4 Junction-Voltage-Carrier-Number Correlation.- A.5 Photon-Flux -Junction-Voltage Correlation.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826