A graduate text explaining how methods of nonlinear analysis can be used to tackle nonlinear differential equations. Suitable for mathematicians, physicists and engineers, topics covered range from elementary tools of bifurcation theory and analysis to critical point theory and elliptic partial differential equations. The book is amply illustrated with many exercises.
A graduate text explaining how methods of nonlinear analysis can be used to tackle nonlinear differential equations. Suitable for mathematicians, physicists and engineers, topics covered range from elementary tools of bifurcation theory and analysis to critical point theory and elliptic partial differential equations. The book is amply illustrated with many exercises.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Antonio Ambrosetti is a Professor at SISSA, Trieste.
Inhaltsangabe
Preface 1. Preliminaries Part I. Topological Methods: 2. A primer on bifurcation theory 3. Topological degree, I 4. Topological degree, II: global properties Part II. Variational Methods, I: 5. Critical points: extrema 6. Constrained critical points 7. Deformations and the Palais-Smale condition 8. Saddle points and min-max methods Part III. Variational Methods, II: 9. Lusternik-Schnirelman theory 10. Critical points of even functionals on symmetric manifolds 11. Further results on Elliptic Dirichlet problems 12. Morse theory Part IV. Appendices: Appendix 1. Qualitative results Appendix 2. The concentration compactness principle Appendix 3. Bifurcation for problems on Rn Appendix 4. Vortex rings in an ideal fluid Appendix 5. Perturbation methods Appendix 6. Some problems arising in differential geometry Bibliography Index.
Preface 1. Preliminaries Part I. Topological Methods: 2. A primer on bifurcation theory 3. Topological degree, I 4. Topological degree, II: global properties Part II. Variational Methods, I: 5. Critical points: extrema 6. Constrained critical points 7. Deformations and the Palais-Smale condition 8. Saddle points and min-max methods Part III. Variational Methods, II: 9. Lusternik-Schnirelman theory 10. Critical points of even functionals on symmetric manifolds 11. Further results on Elliptic Dirichlet problems 12. Morse theory Part IV. Appendices: Appendix 1. Qualitative results Appendix 2. The concentration compactness principle Appendix 3. Bifurcation for problems on Rn Appendix 4. Vortex rings in an ideal fluid Appendix 5. Perturbation methods Appendix 6. Some problems arising in differential geometry Bibliography Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826