Vasilis Z. Marmarelis
Nonlinear Dynamic Modeling of Physiological Systems
Vasilis Z. Marmarelis
Nonlinear Dynamic Modeling of Physiological Systems
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data. This essential study of nonlinearities in physiology apprises…mehr
Andere Kunden interessierten sich auch für
- Metin Akay (Hrsg.)Nonlinear Biomedical Signal Processing, Volume 2268,99 €
- Anne Beuter / Leon Glass / Michael C. Mackey / Michele S. Titcombe (eds.)Nonlinear Dynamics in Physiology and Medicine42,99 €
- Computational Intelligence140,99 €
- Yanqing ZhangMachine Learning in Bioinformatics175,99 €
- Fortunato PesarinPermutation Tests for Complex Data186,99 €
- Ion MandoiuBioinformatics Algorithms216,99 €
- E. de SchutterComputational Neuroscience: Trends in Research 2003387,99 €
-
-
-
The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data.
This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- IEEE Press Series on Biomedical Engineering
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 560
- Erscheinungstermin: 3. September 2004
- Englisch
- Abmessung: 260mm x 186mm x 31mm
- Gewicht: 1160g
- ISBN-13: 9780471469605
- ISBN-10: 0471469602
- Artikelnr.: 12965232
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- IEEE Press Series on Biomedical Engineering
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 560
- Erscheinungstermin: 3. September 2004
- Englisch
- Abmessung: 260mm x 186mm x 31mm
- Gewicht: 1160g
- ISBN-13: 9780471469605
- ISBN-10: 0471469602
- Artikelnr.: 12965232
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Vasilis Z. Marmarelis, PhD, received his diploma in electrical and mechanical engineering from the National Technical University of Athens and his MS in information science and PhD in engineering science (bio-information systems) from the California Institute of Technology. He is currently a professor in the faculty of the Biomedical and Electrical Engineering Departments at USC, where he served as chairman of Biomedical Engineering from 1990 to 1996. He is also Codirector of the Biomedical Simulations Resource (BMSR), a research center dedicated to modeling and simulation of physiological systems and funded by the National Institutes of Health through multimillion-dollar grants since 1985.
Prologue xiii 1 Introduction 1 1.1 Purpose of this Book 1 1.2 Advocated Approach 4 1.3 The Problem of System Modeling in Physiology 6 1.3.1 Model Specification and Estimation 10 1.3.2 Nonlinearity and Nonstationarity 12 1.3.3 Definition of the Modeling Problem 13 1.4 Types of Nonlinear Models of Physiological Systems 13 Example 1.1. Vertebrate Retina 15 Example 1.2. Invertebrate Photoreceptor 18 Example 1.3. Volterra analysis of Riccati Equation 19 Example 1.4. Glucose-Insulin Minimal Model 21 Example 1.5. Cerebral Autoregulation 22 1.5 Deductive and Inductive Modeling 24 Historical Note #1: Hippocratic and Galenic Views of 26 Integrative Physiology 2 Nonparametric Modeling 29 2.1 Volterra Models 31 2.1.1 Examples of Volterra Models 37 Example 2.1. Static Nonlinear System 37 Example 2.2. L-N Cascade System 38 Example 2.3. L-N-M "Sandwich" System 39 Example 2.4. Riccati System 40 2.1.2 Operational Meaning of the Volterra Kernels 41 Impulsive Inputs 42 Sinusoidal Inputs 43 Remarks on the Meaning of Volterra Kernels 45 2.1.3 Frequency-Domain Representation of the Volterra Models 45 2.1.4 Discrete-Time Volterra Models 47 2.1.5 Estimation of Volterra Kernels 49 Specialized Test Inputs 50 Arbitrary Inputs 52 Fast Exact Orthogonalization and Parallel-Cascade Methods 55 Iterative Cost-Minimization Methods for Non-Gaussian 55 Residuals 2.2 Wiener Models 57 2.2.1 Relation between Volterra and Wiener Models 60 The Wiener Class of Systems 62 Examples of Wiener Models 63 Comparison of Volterra/Wiener Model Predictions 64 2.2.2 Wiener Approach to Kernel Estimation 67 2.2.3 The Cross-Correlation Technique for Wiener Kernel Estimation 72 Estimation of h0 73 Estimation of h1 (
) 73 Estimation of h2 (
1,
2) 74 Estimation of h3 (
1,
2,
3) 75 Some Practical Considerations 77 Illustrative Example 78 Frequency-Domain Estimation of Wiener Kernels 78 2.2.4 Quasiwhite Test Inputs 80 CSRS and Volterra Kernels 84 The Diagonal Estimability Problem 85 An Analytical Example 86 Comparison of Model Prediction Errors 88 Discrete-Time Representation of the CSRS Functional Series 89 Pseudorandom Signals Based on m-Sequences 89 Comparative Use of GWN, PRS, and CSRS 92 2.2.5 Apparent Transfer Function and Coherence Measurements 93 Example 2.5. L-N Cascade System 96 Example 2.6. Quadratic Volterra System 97 Example 2.7. Nonwhite Gaussian Inputs 98 Example 2.8. Duffing System 98 Concluding Remarks 99 2.3 Efficient Volterra Kernel Estimation 100 2.3.1 Volterra Kernel Expansions 101 Model Order Determination 104 2.3.2 The Laguerre Expansion Technique 107 Illustrative Examples 112 2.3.3 High-Order Volterra Modeling with Equivalent Networks 122 2.4 Analysis of Estimation Errors 125 2.4.1 Sources of Estimation Errors 125 2.4.2 Estimation Errors Associated with the Cross-Correlation 127 Technique Estimation Bias 128 Estimation Variance 130 Optimization of Input Parameters 131 Noise Effects 134 Erroneous Scaling of Kernel Estimates 136 2.4.3 Estimation Errors Associated with Direct Inversion Methods 137 2.4.4 Estimation Errors Associated with Iterative 139 Cost-Minimization Methods Historical Note #2: Vito Volterra and Norbert Wiener 140 3 Parametric Modeling 145 3.1 Basic Parametric Model Forms and Estimation Procedures 146 3.1.1 The Nonlinear Case 150 3.1.2 The Nonstationary Case 152 3.2 Volterra Kernels of Nonlinear Differential Equations 153 Example 3.1. The Riccati Equation 157 3.2.1 Apparent Transfer Functions of Linearized Models 158 Example 3.2. Illustrative Example 160 3.2.2 Nonlinear Parametric Models with Intermodulation 161 3.3 Discrete-Time Volterra Kernels of NARMAX Models 164 3.4 From Volterra Kernel Measurements to Parametric Models 167 Example 3.3. Illustrative Example 169 3.5 Equivalence Between Continuous and Discrete Parametric Models 171 Example 3.4. Illustrative Example 175 3.5.1 Modular Representation 177 4 Modular and Connectionist Modeling 179 4.1 Modular Form of Nonparametric Models 179 4.1.1 Principal Dynamic Modes 180 Illustrative Examples 186 4.1.2 Volterra Models of System Cascades 191 The L-N-M, L-N, and N-M Cascades 194 4.1.3 Volterra Models of Systems with Lateral Branches 198 4.1.4 Volterra Models of Systems with Feedback Branches 200 4.1.5 Nonlinear Feedback Described by Differential Equations 202 Example 1. Cubic Feedback Systems 204 Example 2. Sigmoid Feedback Systems 209 Example 3. Positive Nonlinear Feedback 213 Example 4. Second-Order Kernels of Nonlinear 215 Feedback Systems Nonlinear Feedback in Sensory Systems 216 Concluding Remarks on Nonlinear Feedback 220 4.2 Connectionist Models 223 4.2.1 Equivalence between Connectionist and Volterra Models 223 Relation with PDM Modeling 230 Illustrative Examples 232 4.2.2 Volterra-Equivalent Network Architectures for Nonlinear 235 System Modeling Equivalence with Volterra Kernels/Models 238 Selection of the Structural Parameters of the VEN Model 238 Convergence and Accuracy of the Training Procedure 240 The Pseudomode-Peeling Method 244 Nonlinear Autoregressive Modeling (Open-Loop) 246 4.3 The Laguerre-Volterra Network 246 Illustrative Example of LVN Modeling 249 Modeling Systems with Fast and Slow Dynamic (LVN-2) 251 Illustrative Examples of LVN-2 Modeling 255 4.4 The VWM Model 260 5 A Practitioner's Guide 265 5.1 Practical Considerations and Experimental Requirements 265 5.1.1 System Characteristics 266 System Bandwidth 266 System Memory 267 System Dynamic Range 267 System Linearity 268 System Stationarity 268 System Ergodicity 268 5.1.2 Input Characteristics 269 5.1.3 Experimental Characteristics 270 5.2 Preliminary Tests and Data Preparation 272 5.2.1 Test for System Bandwidth 272 5.2.2 Test for System Memory 272 5.2.3 Test for System Stationarity and Ergodicity 273 5.2.4 Test for System Linearity 274 5.2.5 Data Preparation 275 5.3 Model Specification and Estimation 276 5.3.1 The MDV Modeling Methodology 277 5.3.2 The VEN/VWM Modeling Methodology 278 5.4 Model Validation and Interpretation 279 5.4.1 Model Validation 279 5.4.2 Model Interpretation 281 Interpretation of Volterra Kernels 281 Interpretation of the PDM Model 282 5.5 Outline of Step-by-Step Procedure 283 5.5.1 Elaboration of the Key Step # 5 284 6 Selected Applications 285 6.1 Neurosensory Systems 286 6.1.1 Vertebrate Retina 287 6.1.2 Invertebrate Retina 396 6.1.3 Auditory Nerve Fibers 302 6.1.4 Spider Mechanoreceptor 307 6.2 Cardiovascular System 320 6.3 Renal System 333 6.4 Metabolic-Endocrine System 342 7 Modeling of Multiinput/Multioutput Systems 359 7.1 The Two-Input Case 360 7.1.1 The Two-Input Cross-Correlation Technique 362 7.1.2 The Two-Input Kernel-Expansion Technique 362 7.1.3 Volterra-Equivalent Network Models with Two Inputs 364 Illustrative Example 366 7.2 Applications of Two-Input Modeling to Physiological Systems 369 7.2.1 Motion Detection in the Invertebrate Retina 369 7.2.2 Receptive Field Organization in the Vertebrate Retina 370 7.2.3 Metabolic Autoregulation in Dogs 378 7.2.4 Cerebral Autoregulation in Humans 380 7.3 The Multiinput Case 389 7.3.1 Cross-Correlation-Based Method for Multiinput Modeling 390 7.3.2 The Kernel-Expansion Method for Multiinput Modeling 393 7.3.3 Network-Based Multiinput Modeling 393 7.4 Spatiotemporal and Spectrotemporal Modeling 395 7.4.1 Spatiotemporal Modeling of Retinal Cells 398 7.4.2 Spatiotemporal Modeling of Cortical Cells 401 8 Modeling of Neuronal Systems 407 8.1 A General Model of Membrane and Synaptic Dynamics 408 8.2 Functional Integration in the Single Neuron 414 8.2.1 Neuronal Modes and Trigger Regions 417 Illustrative Examples 427 8.2.2 Minimum-Order Modeling of Spike-Output Systems 432 The Reverse-Correlation Technique 432 Minimum-Order Wiener Models 435 Illustrative Example 439 8.3 Neuronal Systems with Point-Process Inputs 439 8.3.1 The Lag-Delta Representation of P-V or P-W Kernels 445 8.3.2 The Reduced P-V or P-W Kernels 446 8.3.3 Examples from the Hippocampal Formation 450 Single-Input Stimulation in Vivo and Cross-Correlation 450 Technique Single-Input Stimulation in Vitro and Laguerre-Expansion 455 Technique Dual-Input Stimulation in the Hippocampal Slice 457 Nonlinear Modeling of Synaptic Dynamics 461 8.4 Modeling of Neuronal Ensembles 463 9 Modeling of Nonstationary Systems 467 9.1 Quasistationary and Recursive Tracking Methods 468 9.2 Kernel Expansion Method 469 9.2.1 Illustrative Example 474 9.2.2 A Test of Nonstationarity 475 9.2.3 Linear Time-Varying Systems with Arbitrary Inputs 479 9.3 Network-Based Methods 480 9.3.1 Illustrative Examples 481 9.4 Applications to Nonstationary Physiological Systems 484 10 Modeling of Closed-Loop Systems 489 10.1 Autoregressive Form of Closed-Loop Model 490 10.2 Network Model Form of Closed-Loop Systems 491 Appendix I Function Expansions 495 Appendix II Gaussian White Noise 499 Appendix III Construction of the Wiener Series 503 Appendix IV Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes 505 References 507 Index 535
) 73 Estimation of h2 (
1,
2) 74 Estimation of h3 (
1,
2,
3) 75 Some Practical Considerations 77 Illustrative Example 78 Frequency-Domain Estimation of Wiener Kernels 78 2.2.4 Quasiwhite Test Inputs 80 CSRS and Volterra Kernels 84 The Diagonal Estimability Problem 85 An Analytical Example 86 Comparison of Model Prediction Errors 88 Discrete-Time Representation of the CSRS Functional Series 89 Pseudorandom Signals Based on m-Sequences 89 Comparative Use of GWN, PRS, and CSRS 92 2.2.5 Apparent Transfer Function and Coherence Measurements 93 Example 2.5. L-N Cascade System 96 Example 2.6. Quadratic Volterra System 97 Example 2.7. Nonwhite Gaussian Inputs 98 Example 2.8. Duffing System 98 Concluding Remarks 99 2.3 Efficient Volterra Kernel Estimation 100 2.3.1 Volterra Kernel Expansions 101 Model Order Determination 104 2.3.2 The Laguerre Expansion Technique 107 Illustrative Examples 112 2.3.3 High-Order Volterra Modeling with Equivalent Networks 122 2.4 Analysis of Estimation Errors 125 2.4.1 Sources of Estimation Errors 125 2.4.2 Estimation Errors Associated with the Cross-Correlation 127 Technique Estimation Bias 128 Estimation Variance 130 Optimization of Input Parameters 131 Noise Effects 134 Erroneous Scaling of Kernel Estimates 136 2.4.3 Estimation Errors Associated with Direct Inversion Methods 137 2.4.4 Estimation Errors Associated with Iterative 139 Cost-Minimization Methods Historical Note #2: Vito Volterra and Norbert Wiener 140 3 Parametric Modeling 145 3.1 Basic Parametric Model Forms and Estimation Procedures 146 3.1.1 The Nonlinear Case 150 3.1.2 The Nonstationary Case 152 3.2 Volterra Kernels of Nonlinear Differential Equations 153 Example 3.1. The Riccati Equation 157 3.2.1 Apparent Transfer Functions of Linearized Models 158 Example 3.2. Illustrative Example 160 3.2.2 Nonlinear Parametric Models with Intermodulation 161 3.3 Discrete-Time Volterra Kernels of NARMAX Models 164 3.4 From Volterra Kernel Measurements to Parametric Models 167 Example 3.3. Illustrative Example 169 3.5 Equivalence Between Continuous and Discrete Parametric Models 171 Example 3.4. Illustrative Example 175 3.5.1 Modular Representation 177 4 Modular and Connectionist Modeling 179 4.1 Modular Form of Nonparametric Models 179 4.1.1 Principal Dynamic Modes 180 Illustrative Examples 186 4.1.2 Volterra Models of System Cascades 191 The L-N-M, L-N, and N-M Cascades 194 4.1.3 Volterra Models of Systems with Lateral Branches 198 4.1.4 Volterra Models of Systems with Feedback Branches 200 4.1.5 Nonlinear Feedback Described by Differential Equations 202 Example 1. Cubic Feedback Systems 204 Example 2. Sigmoid Feedback Systems 209 Example 3. Positive Nonlinear Feedback 213 Example 4. Second-Order Kernels of Nonlinear 215 Feedback Systems Nonlinear Feedback in Sensory Systems 216 Concluding Remarks on Nonlinear Feedback 220 4.2 Connectionist Models 223 4.2.1 Equivalence between Connectionist and Volterra Models 223 Relation with PDM Modeling 230 Illustrative Examples 232 4.2.2 Volterra-Equivalent Network Architectures for Nonlinear 235 System Modeling Equivalence with Volterra Kernels/Models 238 Selection of the Structural Parameters of the VEN Model 238 Convergence and Accuracy of the Training Procedure 240 The Pseudomode-Peeling Method 244 Nonlinear Autoregressive Modeling (Open-Loop) 246 4.3 The Laguerre-Volterra Network 246 Illustrative Example of LVN Modeling 249 Modeling Systems with Fast and Slow Dynamic (LVN-2) 251 Illustrative Examples of LVN-2 Modeling 255 4.4 The VWM Model 260 5 A Practitioner's Guide 265 5.1 Practical Considerations and Experimental Requirements 265 5.1.1 System Characteristics 266 System Bandwidth 266 System Memory 267 System Dynamic Range 267 System Linearity 268 System Stationarity 268 System Ergodicity 268 5.1.2 Input Characteristics 269 5.1.3 Experimental Characteristics 270 5.2 Preliminary Tests and Data Preparation 272 5.2.1 Test for System Bandwidth 272 5.2.2 Test for System Memory 272 5.2.3 Test for System Stationarity and Ergodicity 273 5.2.4 Test for System Linearity 274 5.2.5 Data Preparation 275 5.3 Model Specification and Estimation 276 5.3.1 The MDV Modeling Methodology 277 5.3.2 The VEN/VWM Modeling Methodology 278 5.4 Model Validation and Interpretation 279 5.4.1 Model Validation 279 5.4.2 Model Interpretation 281 Interpretation of Volterra Kernels 281 Interpretation of the PDM Model 282 5.5 Outline of Step-by-Step Procedure 283 5.5.1 Elaboration of the Key Step # 5 284 6 Selected Applications 285 6.1 Neurosensory Systems 286 6.1.1 Vertebrate Retina 287 6.1.2 Invertebrate Retina 396 6.1.3 Auditory Nerve Fibers 302 6.1.4 Spider Mechanoreceptor 307 6.2 Cardiovascular System 320 6.3 Renal System 333 6.4 Metabolic-Endocrine System 342 7 Modeling of Multiinput/Multioutput Systems 359 7.1 The Two-Input Case 360 7.1.1 The Two-Input Cross-Correlation Technique 362 7.1.2 The Two-Input Kernel-Expansion Technique 362 7.1.3 Volterra-Equivalent Network Models with Two Inputs 364 Illustrative Example 366 7.2 Applications of Two-Input Modeling to Physiological Systems 369 7.2.1 Motion Detection in the Invertebrate Retina 369 7.2.2 Receptive Field Organization in the Vertebrate Retina 370 7.2.3 Metabolic Autoregulation in Dogs 378 7.2.4 Cerebral Autoregulation in Humans 380 7.3 The Multiinput Case 389 7.3.1 Cross-Correlation-Based Method for Multiinput Modeling 390 7.3.2 The Kernel-Expansion Method for Multiinput Modeling 393 7.3.3 Network-Based Multiinput Modeling 393 7.4 Spatiotemporal and Spectrotemporal Modeling 395 7.4.1 Spatiotemporal Modeling of Retinal Cells 398 7.4.2 Spatiotemporal Modeling of Cortical Cells 401 8 Modeling of Neuronal Systems 407 8.1 A General Model of Membrane and Synaptic Dynamics 408 8.2 Functional Integration in the Single Neuron 414 8.2.1 Neuronal Modes and Trigger Regions 417 Illustrative Examples 427 8.2.2 Minimum-Order Modeling of Spike-Output Systems 432 The Reverse-Correlation Technique 432 Minimum-Order Wiener Models 435 Illustrative Example 439 8.3 Neuronal Systems with Point-Process Inputs 439 8.3.1 The Lag-Delta Representation of P-V or P-W Kernels 445 8.3.2 The Reduced P-V or P-W Kernels 446 8.3.3 Examples from the Hippocampal Formation 450 Single-Input Stimulation in Vivo and Cross-Correlation 450 Technique Single-Input Stimulation in Vitro and Laguerre-Expansion 455 Technique Dual-Input Stimulation in the Hippocampal Slice 457 Nonlinear Modeling of Synaptic Dynamics 461 8.4 Modeling of Neuronal Ensembles 463 9 Modeling of Nonstationary Systems 467 9.1 Quasistationary and Recursive Tracking Methods 468 9.2 Kernel Expansion Method 469 9.2.1 Illustrative Example 474 9.2.2 A Test of Nonstationarity 475 9.2.3 Linear Time-Varying Systems with Arbitrary Inputs 479 9.3 Network-Based Methods 480 9.3.1 Illustrative Examples 481 9.4 Applications to Nonstationary Physiological Systems 484 10 Modeling of Closed-Loop Systems 489 10.1 Autoregressive Form of Closed-Loop Model 490 10.2 Network Model Form of Closed-Loop Systems 491 Appendix I Function Expansions 495 Appendix II Gaussian White Noise 499 Appendix III Construction of the Wiener Series 503 Appendix IV Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes 505 References 507 Index 535
Prologue xiii 1 Introduction 1 1.1 Purpose of this Book 1 1.2 Advocated Approach 4 1.3 The Problem of System Modeling in Physiology 6 1.3.1 Model Specification and Estimation 10 1.3.2 Nonlinearity and Nonstationarity 12 1.3.3 Definition of the Modeling Problem 13 1.4 Types of Nonlinear Models of Physiological Systems 13 Example 1.1. Vertebrate Retina 15 Example 1.2. Invertebrate Photoreceptor 18 Example 1.3. Volterra analysis of Riccati Equation 19 Example 1.4. Glucose-Insulin Minimal Model 21 Example 1.5. Cerebral Autoregulation 22 1.5 Deductive and Inductive Modeling 24 Historical Note #1: Hippocratic and Galenic Views of 26 Integrative Physiology 2 Nonparametric Modeling 29 2.1 Volterra Models 31 2.1.1 Examples of Volterra Models 37 Example 2.1. Static Nonlinear System 37 Example 2.2. L-N Cascade System 38 Example 2.3. L-N-M "Sandwich" System 39 Example 2.4. Riccati System 40 2.1.2 Operational Meaning of the Volterra Kernels 41 Impulsive Inputs 42 Sinusoidal Inputs 43 Remarks on the Meaning of Volterra Kernels 45 2.1.3 Frequency-Domain Representation of the Volterra Models 45 2.1.4 Discrete-Time Volterra Models 47 2.1.5 Estimation of Volterra Kernels 49 Specialized Test Inputs 50 Arbitrary Inputs 52 Fast Exact Orthogonalization and Parallel-Cascade Methods 55 Iterative Cost-Minimization Methods for Non-Gaussian 55 Residuals 2.2 Wiener Models 57 2.2.1 Relation between Volterra and Wiener Models 60 The Wiener Class of Systems 62 Examples of Wiener Models 63 Comparison of Volterra/Wiener Model Predictions 64 2.2.2 Wiener Approach to Kernel Estimation 67 2.2.3 The Cross-Correlation Technique for Wiener Kernel Estimation 72 Estimation of h0 73 Estimation of h1 (
) 73 Estimation of h2 (
1,
2) 74 Estimation of h3 (
1,
2,
3) 75 Some Practical Considerations 77 Illustrative Example 78 Frequency-Domain Estimation of Wiener Kernels 78 2.2.4 Quasiwhite Test Inputs 80 CSRS and Volterra Kernels 84 The Diagonal Estimability Problem 85 An Analytical Example 86 Comparison of Model Prediction Errors 88 Discrete-Time Representation of the CSRS Functional Series 89 Pseudorandom Signals Based on m-Sequences 89 Comparative Use of GWN, PRS, and CSRS 92 2.2.5 Apparent Transfer Function and Coherence Measurements 93 Example 2.5. L-N Cascade System 96 Example 2.6. Quadratic Volterra System 97 Example 2.7. Nonwhite Gaussian Inputs 98 Example 2.8. Duffing System 98 Concluding Remarks 99 2.3 Efficient Volterra Kernel Estimation 100 2.3.1 Volterra Kernel Expansions 101 Model Order Determination 104 2.3.2 The Laguerre Expansion Technique 107 Illustrative Examples 112 2.3.3 High-Order Volterra Modeling with Equivalent Networks 122 2.4 Analysis of Estimation Errors 125 2.4.1 Sources of Estimation Errors 125 2.4.2 Estimation Errors Associated with the Cross-Correlation 127 Technique Estimation Bias 128 Estimation Variance 130 Optimization of Input Parameters 131 Noise Effects 134 Erroneous Scaling of Kernel Estimates 136 2.4.3 Estimation Errors Associated with Direct Inversion Methods 137 2.4.4 Estimation Errors Associated with Iterative 139 Cost-Minimization Methods Historical Note #2: Vito Volterra and Norbert Wiener 140 3 Parametric Modeling 145 3.1 Basic Parametric Model Forms and Estimation Procedures 146 3.1.1 The Nonlinear Case 150 3.1.2 The Nonstationary Case 152 3.2 Volterra Kernels of Nonlinear Differential Equations 153 Example 3.1. The Riccati Equation 157 3.2.1 Apparent Transfer Functions of Linearized Models 158 Example 3.2. Illustrative Example 160 3.2.2 Nonlinear Parametric Models with Intermodulation 161 3.3 Discrete-Time Volterra Kernels of NARMAX Models 164 3.4 From Volterra Kernel Measurements to Parametric Models 167 Example 3.3. Illustrative Example 169 3.5 Equivalence Between Continuous and Discrete Parametric Models 171 Example 3.4. Illustrative Example 175 3.5.1 Modular Representation 177 4 Modular and Connectionist Modeling 179 4.1 Modular Form of Nonparametric Models 179 4.1.1 Principal Dynamic Modes 180 Illustrative Examples 186 4.1.2 Volterra Models of System Cascades 191 The L-N-M, L-N, and N-M Cascades 194 4.1.3 Volterra Models of Systems with Lateral Branches 198 4.1.4 Volterra Models of Systems with Feedback Branches 200 4.1.5 Nonlinear Feedback Described by Differential Equations 202 Example 1. Cubic Feedback Systems 204 Example 2. Sigmoid Feedback Systems 209 Example 3. Positive Nonlinear Feedback 213 Example 4. Second-Order Kernels of Nonlinear 215 Feedback Systems Nonlinear Feedback in Sensory Systems 216 Concluding Remarks on Nonlinear Feedback 220 4.2 Connectionist Models 223 4.2.1 Equivalence between Connectionist and Volterra Models 223 Relation with PDM Modeling 230 Illustrative Examples 232 4.2.2 Volterra-Equivalent Network Architectures for Nonlinear 235 System Modeling Equivalence with Volterra Kernels/Models 238 Selection of the Structural Parameters of the VEN Model 238 Convergence and Accuracy of the Training Procedure 240 The Pseudomode-Peeling Method 244 Nonlinear Autoregressive Modeling (Open-Loop) 246 4.3 The Laguerre-Volterra Network 246 Illustrative Example of LVN Modeling 249 Modeling Systems with Fast and Slow Dynamic (LVN-2) 251 Illustrative Examples of LVN-2 Modeling 255 4.4 The VWM Model 260 5 A Practitioner's Guide 265 5.1 Practical Considerations and Experimental Requirements 265 5.1.1 System Characteristics 266 System Bandwidth 266 System Memory 267 System Dynamic Range 267 System Linearity 268 System Stationarity 268 System Ergodicity 268 5.1.2 Input Characteristics 269 5.1.3 Experimental Characteristics 270 5.2 Preliminary Tests and Data Preparation 272 5.2.1 Test for System Bandwidth 272 5.2.2 Test for System Memory 272 5.2.3 Test for System Stationarity and Ergodicity 273 5.2.4 Test for System Linearity 274 5.2.5 Data Preparation 275 5.3 Model Specification and Estimation 276 5.3.1 The MDV Modeling Methodology 277 5.3.2 The VEN/VWM Modeling Methodology 278 5.4 Model Validation and Interpretation 279 5.4.1 Model Validation 279 5.4.2 Model Interpretation 281 Interpretation of Volterra Kernels 281 Interpretation of the PDM Model 282 5.5 Outline of Step-by-Step Procedure 283 5.5.1 Elaboration of the Key Step # 5 284 6 Selected Applications 285 6.1 Neurosensory Systems 286 6.1.1 Vertebrate Retina 287 6.1.2 Invertebrate Retina 396 6.1.3 Auditory Nerve Fibers 302 6.1.4 Spider Mechanoreceptor 307 6.2 Cardiovascular System 320 6.3 Renal System 333 6.4 Metabolic-Endocrine System 342 7 Modeling of Multiinput/Multioutput Systems 359 7.1 The Two-Input Case 360 7.1.1 The Two-Input Cross-Correlation Technique 362 7.1.2 The Two-Input Kernel-Expansion Technique 362 7.1.3 Volterra-Equivalent Network Models with Two Inputs 364 Illustrative Example 366 7.2 Applications of Two-Input Modeling to Physiological Systems 369 7.2.1 Motion Detection in the Invertebrate Retina 369 7.2.2 Receptive Field Organization in the Vertebrate Retina 370 7.2.3 Metabolic Autoregulation in Dogs 378 7.2.4 Cerebral Autoregulation in Humans 380 7.3 The Multiinput Case 389 7.3.1 Cross-Correlation-Based Method for Multiinput Modeling 390 7.3.2 The Kernel-Expansion Method for Multiinput Modeling 393 7.3.3 Network-Based Multiinput Modeling 393 7.4 Spatiotemporal and Spectrotemporal Modeling 395 7.4.1 Spatiotemporal Modeling of Retinal Cells 398 7.4.2 Spatiotemporal Modeling of Cortical Cells 401 8 Modeling of Neuronal Systems 407 8.1 A General Model of Membrane and Synaptic Dynamics 408 8.2 Functional Integration in the Single Neuron 414 8.2.1 Neuronal Modes and Trigger Regions 417 Illustrative Examples 427 8.2.2 Minimum-Order Modeling of Spike-Output Systems 432 The Reverse-Correlation Technique 432 Minimum-Order Wiener Models 435 Illustrative Example 439 8.3 Neuronal Systems with Point-Process Inputs 439 8.3.1 The Lag-Delta Representation of P-V or P-W Kernels 445 8.3.2 The Reduced P-V or P-W Kernels 446 8.3.3 Examples from the Hippocampal Formation 450 Single-Input Stimulation in Vivo and Cross-Correlation 450 Technique Single-Input Stimulation in Vitro and Laguerre-Expansion 455 Technique Dual-Input Stimulation in the Hippocampal Slice 457 Nonlinear Modeling of Synaptic Dynamics 461 8.4 Modeling of Neuronal Ensembles 463 9 Modeling of Nonstationary Systems 467 9.1 Quasistationary and Recursive Tracking Methods 468 9.2 Kernel Expansion Method 469 9.2.1 Illustrative Example 474 9.2.2 A Test of Nonstationarity 475 9.2.3 Linear Time-Varying Systems with Arbitrary Inputs 479 9.3 Network-Based Methods 480 9.3.1 Illustrative Examples 481 9.4 Applications to Nonstationary Physiological Systems 484 10 Modeling of Closed-Loop Systems 489 10.1 Autoregressive Form of Closed-Loop Model 490 10.2 Network Model Form of Closed-Loop Systems 491 Appendix I Function Expansions 495 Appendix II Gaussian White Noise 499 Appendix III Construction of the Wiener Series 503 Appendix IV Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes 505 References 507 Index 535
) 73 Estimation of h2 (
1,
2) 74 Estimation of h3 (
1,
2,
3) 75 Some Practical Considerations 77 Illustrative Example 78 Frequency-Domain Estimation of Wiener Kernels 78 2.2.4 Quasiwhite Test Inputs 80 CSRS and Volterra Kernels 84 The Diagonal Estimability Problem 85 An Analytical Example 86 Comparison of Model Prediction Errors 88 Discrete-Time Representation of the CSRS Functional Series 89 Pseudorandom Signals Based on m-Sequences 89 Comparative Use of GWN, PRS, and CSRS 92 2.2.5 Apparent Transfer Function and Coherence Measurements 93 Example 2.5. L-N Cascade System 96 Example 2.6. Quadratic Volterra System 97 Example 2.7. Nonwhite Gaussian Inputs 98 Example 2.8. Duffing System 98 Concluding Remarks 99 2.3 Efficient Volterra Kernel Estimation 100 2.3.1 Volterra Kernel Expansions 101 Model Order Determination 104 2.3.2 The Laguerre Expansion Technique 107 Illustrative Examples 112 2.3.3 High-Order Volterra Modeling with Equivalent Networks 122 2.4 Analysis of Estimation Errors 125 2.4.1 Sources of Estimation Errors 125 2.4.2 Estimation Errors Associated with the Cross-Correlation 127 Technique Estimation Bias 128 Estimation Variance 130 Optimization of Input Parameters 131 Noise Effects 134 Erroneous Scaling of Kernel Estimates 136 2.4.3 Estimation Errors Associated with Direct Inversion Methods 137 2.4.4 Estimation Errors Associated with Iterative 139 Cost-Minimization Methods Historical Note #2: Vito Volterra and Norbert Wiener 140 3 Parametric Modeling 145 3.1 Basic Parametric Model Forms and Estimation Procedures 146 3.1.1 The Nonlinear Case 150 3.1.2 The Nonstationary Case 152 3.2 Volterra Kernels of Nonlinear Differential Equations 153 Example 3.1. The Riccati Equation 157 3.2.1 Apparent Transfer Functions of Linearized Models 158 Example 3.2. Illustrative Example 160 3.2.2 Nonlinear Parametric Models with Intermodulation 161 3.3 Discrete-Time Volterra Kernels of NARMAX Models 164 3.4 From Volterra Kernel Measurements to Parametric Models 167 Example 3.3. Illustrative Example 169 3.5 Equivalence Between Continuous and Discrete Parametric Models 171 Example 3.4. Illustrative Example 175 3.5.1 Modular Representation 177 4 Modular and Connectionist Modeling 179 4.1 Modular Form of Nonparametric Models 179 4.1.1 Principal Dynamic Modes 180 Illustrative Examples 186 4.1.2 Volterra Models of System Cascades 191 The L-N-M, L-N, and N-M Cascades 194 4.1.3 Volterra Models of Systems with Lateral Branches 198 4.1.4 Volterra Models of Systems with Feedback Branches 200 4.1.5 Nonlinear Feedback Described by Differential Equations 202 Example 1. Cubic Feedback Systems 204 Example 2. Sigmoid Feedback Systems 209 Example 3. Positive Nonlinear Feedback 213 Example 4. Second-Order Kernels of Nonlinear 215 Feedback Systems Nonlinear Feedback in Sensory Systems 216 Concluding Remarks on Nonlinear Feedback 220 4.2 Connectionist Models 223 4.2.1 Equivalence between Connectionist and Volterra Models 223 Relation with PDM Modeling 230 Illustrative Examples 232 4.2.2 Volterra-Equivalent Network Architectures for Nonlinear 235 System Modeling Equivalence with Volterra Kernels/Models 238 Selection of the Structural Parameters of the VEN Model 238 Convergence and Accuracy of the Training Procedure 240 The Pseudomode-Peeling Method 244 Nonlinear Autoregressive Modeling (Open-Loop) 246 4.3 The Laguerre-Volterra Network 246 Illustrative Example of LVN Modeling 249 Modeling Systems with Fast and Slow Dynamic (LVN-2) 251 Illustrative Examples of LVN-2 Modeling 255 4.4 The VWM Model 260 5 A Practitioner's Guide 265 5.1 Practical Considerations and Experimental Requirements 265 5.1.1 System Characteristics 266 System Bandwidth 266 System Memory 267 System Dynamic Range 267 System Linearity 268 System Stationarity 268 System Ergodicity 268 5.1.2 Input Characteristics 269 5.1.3 Experimental Characteristics 270 5.2 Preliminary Tests and Data Preparation 272 5.2.1 Test for System Bandwidth 272 5.2.2 Test for System Memory 272 5.2.3 Test for System Stationarity and Ergodicity 273 5.2.4 Test for System Linearity 274 5.2.5 Data Preparation 275 5.3 Model Specification and Estimation 276 5.3.1 The MDV Modeling Methodology 277 5.3.2 The VEN/VWM Modeling Methodology 278 5.4 Model Validation and Interpretation 279 5.4.1 Model Validation 279 5.4.2 Model Interpretation 281 Interpretation of Volterra Kernels 281 Interpretation of the PDM Model 282 5.5 Outline of Step-by-Step Procedure 283 5.5.1 Elaboration of the Key Step # 5 284 6 Selected Applications 285 6.1 Neurosensory Systems 286 6.1.1 Vertebrate Retina 287 6.1.2 Invertebrate Retina 396 6.1.3 Auditory Nerve Fibers 302 6.1.4 Spider Mechanoreceptor 307 6.2 Cardiovascular System 320 6.3 Renal System 333 6.4 Metabolic-Endocrine System 342 7 Modeling of Multiinput/Multioutput Systems 359 7.1 The Two-Input Case 360 7.1.1 The Two-Input Cross-Correlation Technique 362 7.1.2 The Two-Input Kernel-Expansion Technique 362 7.1.3 Volterra-Equivalent Network Models with Two Inputs 364 Illustrative Example 366 7.2 Applications of Two-Input Modeling to Physiological Systems 369 7.2.1 Motion Detection in the Invertebrate Retina 369 7.2.2 Receptive Field Organization in the Vertebrate Retina 370 7.2.3 Metabolic Autoregulation in Dogs 378 7.2.4 Cerebral Autoregulation in Humans 380 7.3 The Multiinput Case 389 7.3.1 Cross-Correlation-Based Method for Multiinput Modeling 390 7.3.2 The Kernel-Expansion Method for Multiinput Modeling 393 7.3.3 Network-Based Multiinput Modeling 393 7.4 Spatiotemporal and Spectrotemporal Modeling 395 7.4.1 Spatiotemporal Modeling of Retinal Cells 398 7.4.2 Spatiotemporal Modeling of Cortical Cells 401 8 Modeling of Neuronal Systems 407 8.1 A General Model of Membrane and Synaptic Dynamics 408 8.2 Functional Integration in the Single Neuron 414 8.2.1 Neuronal Modes and Trigger Regions 417 Illustrative Examples 427 8.2.2 Minimum-Order Modeling of Spike-Output Systems 432 The Reverse-Correlation Technique 432 Minimum-Order Wiener Models 435 Illustrative Example 439 8.3 Neuronal Systems with Point-Process Inputs 439 8.3.1 The Lag-Delta Representation of P-V or P-W Kernels 445 8.3.2 The Reduced P-V or P-W Kernels 446 8.3.3 Examples from the Hippocampal Formation 450 Single-Input Stimulation in Vivo and Cross-Correlation 450 Technique Single-Input Stimulation in Vitro and Laguerre-Expansion 455 Technique Dual-Input Stimulation in the Hippocampal Slice 457 Nonlinear Modeling of Synaptic Dynamics 461 8.4 Modeling of Neuronal Ensembles 463 9 Modeling of Nonstationary Systems 467 9.1 Quasistationary and Recursive Tracking Methods 468 9.2 Kernel Expansion Method 469 9.2.1 Illustrative Example 474 9.2.2 A Test of Nonstationarity 475 9.2.3 Linear Time-Varying Systems with Arbitrary Inputs 479 9.3 Network-Based Methods 480 9.3.1 Illustrative Examples 481 9.4 Applications to Nonstationary Physiological Systems 484 10 Modeling of Closed-Loop Systems 489 10.1 Autoregressive Form of Closed-Loop Model 490 10.2 Network Model Form of Closed-Loop Systems 491 Appendix I Function Expansions 495 Appendix II Gaussian White Noise 499 Appendix III Construction of the Wiener Series 503 Appendix IV Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes 505 References 507 Index 535