Eryk Infeld / R. Zelazny / A. Galkowski (eds.)
Nonlinear Dynamics, Chaotic and Complex Systems
Herausgeber: Infeld, E.; Galkowski, A.; Zelazny, R.
Eryk Infeld / R. Zelazny / A. Galkowski (eds.)
Nonlinear Dynamics, Chaotic and Complex Systems
Herausgeber: Infeld, E.; Galkowski, A.; Zelazny, R.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book contains reviews of the 'nonlinear revolution' by two dozen world experts.
Andere Kunden interessierten sich auch für
- Fabio BenattiDynamics, Information and Complexity in Quantum Systems132,99 €
- Advances in Nonlinear Dynamics, Volume III183,99 €
- Giulio CasatiChaotic Behavior in Quantum Systems42,99 €
- Advances in Nonlinear Dynamics, Volume II183,99 €
- Fabio BenattiDynamics, Information and Complexity in Quantum Systems150,99 €
- Giulio CasatiChaotic Behavior in Quantum Systems112,99 €
- Fabio BenattiDynamics, Information and Complexity in Quantum Systems88,99 €
-
-
-
This book contains reviews of the 'nonlinear revolution' by two dozen world experts.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 352
- Erscheinungstermin: 4. November 2014
- Englisch
- Abmessung: 235mm x 157mm x 25mm
- Gewicht: 722g
- ISBN-13: 9780521582018
- ISBN-10: 0521582016
- Artikelnr.: 26695217
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 352
- Erscheinungstermin: 4. November 2014
- Englisch
- Abmessung: 235mm x 157mm x 25mm
- Gewicht: 722g
- ISBN-13: 9780521582018
- ISBN-10: 0521582016
- Artikelnr.: 26695217
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random
dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded
unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt
and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G.
Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P.
Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of
relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic
reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H.
Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a
field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile
cellular automata M. Markosova; 9. Transport in an incompletely chaotic
magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and
Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical
mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in
statistical physics B. Chirikov; 12. Foundations of non-equilibrium
statistical mechanics J. P. Dougherty; 13. Thermomechanical particle
simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover,
A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov
background and irreversibility B. Pavlov; 15. Time chaos and the laws of
nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive
systems: dynamic entropies and predictability of evolutionary processes W.
Ebeling; 17. Spatiotemporal chaos information processing in neural networks
H. Szu; 18. Phase transitions and learning in neural networks C. Van den
Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20.
Computational complexity of continuous problems H. Wozniakowski; Part IV.
Complex Systems As An Interface Between Natural Sciences and Environmental
Social and Economic Sciences: 21. Stochastic differential geometry in
finance studies V. G. Makhankov; Part V. Conference Banquet Speech: Where
will the future go? M. J. Feigenbaum.
dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded
unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt
and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G.
Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P.
Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of
relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic
reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H.
Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a
field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile
cellular automata M. Markosova; 9. Transport in an incompletely chaotic
magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and
Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical
mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in
statistical physics B. Chirikov; 12. Foundations of non-equilibrium
statistical mechanics J. P. Dougherty; 13. Thermomechanical particle
simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover,
A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov
background and irreversibility B. Pavlov; 15. Time chaos and the laws of
nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive
systems: dynamic entropies and predictability of evolutionary processes W.
Ebeling; 17. Spatiotemporal chaos information processing in neural networks
H. Szu; 18. Phase transitions and learning in neural networks C. Van den
Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20.
Computational complexity of continuous problems H. Wozniakowski; Part IV.
Complex Systems As An Interface Between Natural Sciences and Environmental
Social and Economic Sciences: 21. Stochastic differential geometry in
finance studies V. G. Makhankov; Part V. Conference Banquet Speech: Where
will the future go? M. J. Feigenbaum.
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random
dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded
unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt
and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G.
Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P.
Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of
relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic
reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H.
Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a
field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile
cellular automata M. Markosova; 9. Transport in an incompletely chaotic
magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and
Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical
mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in
statistical physics B. Chirikov; 12. Foundations of non-equilibrium
statistical mechanics J. P. Dougherty; 13. Thermomechanical particle
simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover,
A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov
background and irreversibility B. Pavlov; 15. Time chaos and the laws of
nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive
systems: dynamic entropies and predictability of evolutionary processes W.
Ebeling; 17. Spatiotemporal chaos information processing in neural networks
H. Szu; 18. Phase transitions and learning in neural networks C. Van den
Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20.
Computational complexity of continuous problems H. Wozniakowski; Part IV.
Complex Systems As An Interface Between Natural Sciences and Environmental
Social and Economic Sciences: 21. Stochastic differential geometry in
finance studies V. G. Makhankov; Part V. Conference Banquet Speech: Where
will the future go? M. J. Feigenbaum.
dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded
unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt
and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G.
Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P.
Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of
relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic
reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H.
Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a
field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile
cellular automata M. Markosova; 9. Transport in an incompletely chaotic
magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and
Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical
mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in
statistical physics B. Chirikov; 12. Foundations of non-equilibrium
statistical mechanics J. P. Dougherty; 13. Thermomechanical particle
simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover,
A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov
background and irreversibility B. Pavlov; 15. Time chaos and the laws of
nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive
systems: dynamic entropies and predictability of evolutionary processes W.
Ebeling; 17. Spatiotemporal chaos information processing in neural networks
H. Szu; 18. Phase transitions and learning in neural networks C. Van den
Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20.
Computational complexity of continuous problems H. Wozniakowski; Part IV.
Complex Systems As An Interface Between Natural Sciences and Environmental
Social and Economic Sciences: 21. Stochastic differential geometry in
finance studies V. G. Makhankov; Part V. Conference Banquet Speech: Where
will the future go? M. J. Feigenbaum.