Integrating latest research results and characterization techniques, this book helps readers understand and apply fundamental principles in nonlinear polymer rheology. The author connects the basic theoretical framework with practical polymer processing, which aids practicing scientists and engineers to go beyond the existing knowledge and explore new applications. Although it is not written as a textbook, the content can be used in an upper undergraduate and first year graduate course on polymer rheology. _ Describes the emerging phenomena and associated conceptual understanding in the…mehr
Integrating latest research results and characterization techniques, this book helps readers understand and apply fundamental principles in nonlinear polymer rheology. The author connects the basic theoretical framework with practical polymer processing, which aids practicing scientists and engineers to go beyond the existing knowledge and explore new applications. Although it is not written as a textbook, the content can be used in an upper undergraduate and first year graduate course on polymer rheology.
_ Describes the emerging phenomena and associated conceptual understanding in the field of nonlinear polymer rheology _ Incorporates details on latest experimental discoveries and provides new methodology for research in polymer rheology _ Integrates latest research results and new characterization techniques like particle tracking velocimetric method _ Focuses on the issues concerning the conceptual and phenomenological foundations for polymer rheology _ Has a companion website for readers to access with videos complementing the content within several chaptersHinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
SHI-QING WANG, PhD, is Kumho Professor of Polymer Science at the University of Akron. He has been teaching at the university level for more than 28 years and has over 150 peer reviewed publications. Dr. Wang is a reviewer for many journals and a Fellow of both the American Physical Society (APS) and American Association for the Advancement of Science (AAAS).
Inhaltsangabe
Preface xv
Acknowledgments xix
Introduction xxi
About the CompanionWebsite xxxi
Part I Linear Viscoelasticity and ExperimentalMethods 1
1 Phenomenological Description of Linear Viscoelasticity 3
1.1 Basic Modes of Deformation 3
1.1.1 Startup shear 4
1.1.2 Step Strain and Shear Cessation from Steady State 5
1.1.3 Dynamic or Oscillatory Shear 5
1.2 Linear Responses 5
1.2.1 Elastic Hookean Solids 6
1.2.2 Viscous Newtonian Liquids 6
1.2.3 Viscoelastic Responses 7
1.2.3.1 Boltzmann Superposition Principle for Linear Response 7
1.2.3.2 General Material Functions in Oscillatory Shear 8
1.2.3.3 Stress Relaxation from Step Strain or Steady-State Shear 8
1.2.4 Maxwell Model for Viscoelastic Liquids 8
1.2.4.1 Stress Relaxation from Step Strain 9
1.2.4.2 Startup Deformation 10
1.2.4.3 Oscillatory (Dynamic) Shear 11
1.2.5 General Features of Viscoelastic Liquids 12
1.2.5.1 Generalized Maxwell Model 12
1.2.5.2 Lack of Linear Response in Small Step Strain: A Dilemma 13
1.2.6 Kelvin-Voigt Model for Viscoelastic Solids 14
1.2.6.1 Creep Experiment 15
1.2.6.2 Strain Recovery in Stress-Free State 15
1.2.7 Weissenberg Number and Yielding during Linear Response 16
1.3 Classical Rubber ElasticityTheory 17
1.3.1 Chain Conformational Entropy and Elastic Force 17
1.3.2 Network Elasticity and Stress-Strain Relation 18
1.3.3 Alternative Expression in terms of Retraction Force and Areal
Strand Density 20
References 21
2 Molecular Characterization in Linear Viscoelastic Regime 23
2.1 Dilute Limit 23
2.1.1 Viscosity of Einstein Suspensions 23
2.1.2 Kirkwood-Riseman Model 24
2.1.3 Zimm Model 24
2.1.4 Rouse Bead-Spring Model 25
2.1.4.1 Stokes Law of Frictional Force of a Solid Sphere (Bead) 26
2.1.4.2 BrownianMotion and Stokes-Einstein Formula for Solid Particles 26
2.1.4.3 Equations of Motion and Rouse Relaxation Time tauR 27
2.1.4.4 Rouse Dynamics for UnentangledMelts 28
2.1.5 Relationship between Diffusion and Relaxation Time 29
2.2 Entangled State 30
2.2.1 Phenomenological Evidence of chain Entanglement 30
2.2.1.1 Elastic Recovery Phenomenon 30
2.2.1.2 Rubbery Plateau in Creep Compliance 31
2.2.1.3 Stress Relaxation 32
2.2.1.4 Elastic Plateau in Storage Modulus G' 32
2.2.2 Transient Network Models 34
2.2.3 Models Depicting Onset of Chain Entanglement 35
2.2.3.1 Packing Model 35
2.2.3.2 Percolation Model 38
2.3 Molecular-Level Descriptions of Entanglement Dynamics 39
2.3.1 Reptation Idea of de Gennes 39
2.3.2 Tube Model of Doi and Edwards 41
2.3.3 Polymer-Mode-Coupling Theory of Schweizer 43
2.3.4 Self-diffusion Constant versus Zero-shear Viscosity 44
2.3.5 Entangled Solutions 46
2.4 Temperature Dependence 47
2.4.1 Time-Temperature Equivalence 47
2.4.2 Thermo-rheological Complexity 48
2.4.3 Segmental Friction and Terminal Relaxation Dynamics 49