This book shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.
This book shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Ivan Nourdin is Full Professor at Nancy University 1, France.
Inhaltsangabe
Preface Introduction 1. Malliavin operators in the one-dimensional case 2. Malliavin operators and isonormal Gaussian processes 3. Stein's method for one-dimensional normal approximations 4. Multidimensional Stein's method 5. Stein meets Malliavin: univariate normal approximations 6. Multivariate normal approximations 7. Exploring the Breuer-Major Theorem 8. Computation of cumulants 9. Exact asymptotics and optimal rates 10. Density estimates 11. Homogeneous sums and universality Appendix 1. Gaussian elements, cumulants and Edgeworth expansions Appendix 2. Hilbert space notation Appendix 3. Distances between probability measures Appendix 4. Fractional Brownian motion Appendix 5. Some results from functional analysis References Index.
Preface Introduction 1. Malliavin operators in the one-dimensional case 2. Malliavin operators and isonormal Gaussian processes 3. Stein's method for one-dimensional normal approximations 4. Multidimensional Stein's method 5. Stein meets Malliavin: univariate normal approximations 6. Multivariate normal approximations 7. Exploring the Breuer-Major Theorem 8. Computation of cumulants 9. Exact asymptotics and optimal rates 10. Density estimates 11. Homogeneous sums and universality Appendix 1. Gaussian elements, cumulants and Edgeworth expansions Appendix 2. Hilbert space notation Appendix 3. Distances between probability measures Appendix 4. Fractional Brownian motion Appendix 5. Some results from functional analysis References Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826